Rare Decays at Tevatron

Topics: 1)B $\rightarrow \mu\mu$ search at Tevatron 2) b \rightarrow sl+F at Tevatron

Marco Rescigno INFN/Roma for the CDF and DØ coll.

> CKM06, Nagoya Dec 14th 2006

Tevatron

Tevatron Luminosity

CDF & DØ detectors

Good muon coverage and triggering
 DØ: |η|<2.2
 CDF: |η|<1

Good momentum resolution, tracking:

CDF:σ(M_B)~25 MeV/c2

■ reduce combinatorial and $B_d \rightarrow hh' \rightarrow B_s$ search window contamination

 Good Vertexing
 CDF: L00 (r_{inner}~1.4cm)
 DØ: L0 upgrade (r_{inner}~1.6cm)

Triggers and Data Sample

z

 10^{6}

 10^{5}

10

10³

10²

Di-Muon Mass

ω,ρφ

J/w: 3.1M

ψ(2S): 480K

CDF:

- di-muon triggered data
- Two separate search channels
 - Central/central muons (CMU-CMU)
 - Central/forward muons (CMU-CMX)
- CMU [η]<0.6, CMX 0.6 < [η] <1</p>
- □ p_T(μ)>1.5 GeV/c
 - **□ 780 pb⁻¹:** B_s(B_d)→μμ limit
 - **920 pb-1:** Search for $B_{u,d,s} \rightarrow \mu \mu h$

DØ:

- First 300 pb⁻¹ di-muon triggered data with box opened → limit
- 400 pb⁻¹ data still blinded
- Combined sensitivity for 700 pb⁻¹ of recorded data (300 pb⁻¹ + 400 pb⁻¹)

CDF Preliminary: ~360pb⁻¹

Triggers:

JPsi

Rare B BBbar

Upsilon

Y(1S): 18K

Y(2S): 3.6K

Trigger @ high lumi?

- Clever and Clever triggering as inst. Luminosity increases
- Keep high purity triggers alive at high luminosity
- Full use of available bandwidth at lower inst. Luminosity with dynamically adjusted prescales
- Hardware upgrade on the level 1 track trigger processor

reduce fake rate by reconstructing track segments also in the stereo layer

$B \rightarrow \mu^+ \mu^-$ search at Tevatron

Motivation

Standard Model prediction very suppressed

$$BR(B_s \to \mu^+ \mu^-) = (3.5 \pm 0.9) \times 10^{-9}$$

(Buchalla & Buras, Misiak & Urban)

Sizeable New Physics enhancement predicted in many scenarios, e.g. high tanß SUSY:

Any signal @ Tevatron would be New Physics !

Strategy

Blind optimization using signal Monte Carlo sample and sideband data
 Normalize to known B⁺→J/ψK⁺

 $BR(B_{s} \to \mu^{+}\mu^{-}) = \frac{N_{Bs}}{N_{B+}} \frac{\alpha_{B+} \cdot \varepsilon_{B+}^{total}}{\alpha_{Bs} \cdot \varepsilon_{Bs}^{total}} \frac{f_{b \to B+}}{f_{b \to Bs}} BR(B^{+} \to J/\psi K^{+}) BR(J/\psi \to \mu^{+}\mu^{-})$

■ Reconstruct Normalization mode in the same data, applying same criteria → reduce systematics

- Only ratio of efficiency matters
- Evaluate expected background and then open the box and calculate BR or limit

Preselection Cuts

- **CDF**:
 - p_T(μ)>2.0 (2.2) GeV/c CMU (CMX)
 - p_T(B_s cand.)>4.0 GeV/c
 - $|y(B_s)| < 1$
 - 4.669 < $m_{\mu\mu}$ < 5.969 GeV/c²
 - muon quality cuts
 - good vertex
 - 3D displacement L_{3D} between primary and secondary vertex
 - □ σ(L_{3D})<150 μm

proper decay length $0 < \lambda < 0.3$ cm **Pre-se**

38k events after pre-selection

Pre-selection DØ: $p_T(\mu) > 2.5 \text{ GeV/c}$ $|\eta(\mu)| < 2$ $p_T(B_s \text{ cand}) > 5.0 \text{ GeV/c}$ $4.5 < m_{\mu\mu} < 7.0 \text{ GeV/c}^2$ muon quality cuts good cli-muon vertex

300 90

$B \rightarrow \mu \mu$ signal discrimination $\mu^{+}\mu^{-}$ mass

 $B_s \rightarrow \mu \mu$

 $(\alpha < 57^{\circ})$

 $\sim \pm 2.5\sigma$ mass window (60 MeV/c²)

B vertex displacement: $CDF \rightarrow \lambda = \frac{cL_{3D}M}{|\vec{p}(B)|}$ $D0 \rightarrow L_{xy} / \sigma_{Lxy}$

■ Isolation (Iso): $Iso = \frac{p_T(B)}{p_T(B) + \sum_i p_T^i (\Delta R_i < 1)}$ (fraction of B→µµ p_T within $\Delta R = (\Delta r_1^2 + \Delta \phi^2)^{1/2} = 1$ cone) ■ "pointing ($\Delta \alpha$)":

 $\Delta \alpha = \angle (\vec{p}(B) - \vec{L}_{3D})$ (angle between B_s momentum and decay axis)

Search Optimization @ CDF

 CDF construct a lilkelihood ratio L_R using λ, Δα, Iso

 $L_{R} = \frac{\prod_{i} P_{s}(x_{i})}{\prod_{i} P_{s}(x_{i}) + \prod_{i} P_{b}(x_{i})}$

 Optimize LR cut on the expected *a-priori* 90% C.L. limit

 Background PDF from data sidebands: 4.669<M_{µµ}<5.169 GeV/c² U 5.469<M_{µµ}<5.969

Search Optimization @ CDF

Optimal value L_R > 0.99
 Signal efficiency ε(B_s)≅ 35%
 Background Rejection O(10³)

 LR distributions in signal and sidebands match
 A posteriori check...

Search optimization @ DØ

- Optimize cuts on three discriminating variables:
 - Pointing angle
 - 2D decay length significance
 - Isolation
- Maximize S/(1+sqrt(B))
- B from sidebands

Similar efficiency and background rejection
 ε(B_s) ≅ 35%

Background prediction

Combinatorics: linear extrapolation from sidebands into ±60 MeV/c² signal window for CDF (± 180 @ D0) Cross check predictions using independent background enriched samples

- Same Sign di-muons
- Opposite Sign di-muons with $L_{xy} < 0$
- Fake muons

■ B→hh': expected signal convoluted with muon fake rate (CDF)

	B_s Signal Window		B_d Signal Window	
Bkg Source	CMU-CMU	CMU-CMX	CMU-CMU	CMU-CMX
Combinatoric	0.72 ± 0.29	0.36 ± 0.21	0.72 ± 0.29	0.36 ± 0.21
$B \rightarrow h^+ h^-$	0.16 ± 0.06	0.03 ± 0.01	1.14 ± 0.16	0.23 ± 0.04
Total	0.88 ± 0.30	0.39 ± 0.21	1.86 ± 0.34	0.59 ± 0.21

Examining Signal Boxes

M.Rescigno - Nagoya12/06

4.8

5

5.2

5.4

5.6

5.8 $M_{\mu\mu} / GeV/c^2$

CDF

780

pb⁻¹

D0

Normalization: $B^+ \rightarrow J/\psi K^+$

Need B⁺→J/ψK⁺ yield to extract limits
 CDF (780 pb⁻¹) : 4200 (CMU-CMU) + 1550 (CMU-CMX)
 D0 (400 pb⁻¹): 900

Results

No signal found...

CDF B_s limit (780 pb⁻¹)
 BR(B_s→μμ) < 8 • 10⁻⁸ (10) @ 90% (95%)C.L.
 DØ average expected limit (700 pb⁻¹)
 BR(B_s→μμ) < 19 • 10⁻⁸ (23) @ 90% (95%)C.L.

CDF B_{cl} limit (780 pb⁻¹), world best
 BR(B_d→μμ) < 2.3 • 10⁻⁸ (3) @ 90% (95%) C.L.
 compare Babar (hep-ex/0408096, 110 fb⁻¹)
 BR(B_d→μμ) < 8.3 • 10⁻⁸ @ 90% C.L.

Impact on New Physics

Current constraints from Δm_s and $B_s \rightarrow \mu \mu$ are differently effective in the new physics parameter phase space Improved limits on $B_s \rightarrow \mu\mu$ can further constraint SUSY at large tanß

Foster, Okumura, Roszkowski Phys. Lett. B641 (2006) 452

Tevatron Expected Reach

Based on current analysis might be conservative Can exclude region of low 10⁻⁸ with full Run **II** statistics Significantly improved analysis will appear soon...

Area of Improvement

- Improved muon selection based on additional information:
 - Energy deposition in the calorimeter
 - dE/dx in the drift chamber
- Significant reduction in fakes expected.
- Neural Net based final discriminant with additional background suppression power
 Use the 2-dimensional dimuon mass-discriminant plane to evaluate signal/limit
 Stay tuned for an updated results at winter conferences...

Current muon fake rate Determined for Kaon and pions of each charge from high statistics $D^* \rightarrow D^0 \rightarrow K^-\pi^+$ sample

$b \rightarrow sl^+l^-$ decays at Tevatron

Goals

Sensitive to New Physics (Rates and Asymmetries)

B_d and B⁺ modes established at B-factories

■ BR(B⁺ \rightarrow $\mu\mu$ K⁺)=0.34^{+0.19}_{-0.14} x 10⁻⁶ (PDG 06)

■ BR($B_d \rightarrow \mu \mu K^*$)=1.22^{+0.38}-0.32 x 10⁻⁶ (PDG 06)

 Re-establish signals in Tevatron data and "discover" unseen B_s→μμφ decays

■ BR(B_s →µµφ)=1.6x10⁻⁶ C. Geng and C. Liu, J. Phys. G 29, 1103 (2003)

CDF new results with 0.92 fb⁻¹
 D0 published a BR(B_s→µµφ) limit with 0.4 fb⁻¹
 PRD 74, 031107 (2006)

Strategy

Similar to the B→μμ case
 Normalize signal to analogous B→J/ψh (J/ψ→μμ) decays

 $\frac{BR(B \to \mu^+ \mu^- h)}{BR(B \to J/\psi h)} = \frac{N_{\mu\mu h}}{N_{J/\Psi h}} \frac{\varepsilon_{J/\Psi h}^{total}}{\varepsilon_{\mu\mu h}^{total}} BR(J/\psi \to \mu^+ \mu^-)$

Blind optimization
 Exclude J/ψ and ψ' region
 Sideband data for optimization and background estimate
 Monte Carlo and data for efficiency ratios with normalization mode

CDF/DØ similar analysis:
 CDF optimize Nsig / sqrt(N_{sig}+N_{bkg})
 DØ optimize Nsig / (1 + sqrt(N_{bkg}))

B_{u,d} Results

- For all modes:

 pT(B)>4.0 GeV/c
 pT(h)>1.0 GeV/c

 m_{Kπ}-m_{K*}
 S0 MeV/c²
- $|m_{Kk}-m_{\phi}| < 10 \text{ MeV/c}^2$

Mode	$B^+ \rightarrow \mu^+ \mu^- K^+$	$\mathrm{B^0} ightarrow \mu^+ \mu^- \mathrm{K^{*0}}$
$N_{sigwindow}$	90	35
N_{BG}	45.3 ± 5.8	$16.5\pm$ 3.6
Gaussian Significance	4.5	2.9

- Counting events in 2σ window around B mass, excesses seen in all modes
- Background from 3-9 σ sideband extrapolated to signal window
 Fit shown for illustration purpose

B_s Results

CDF (920 pb⁻¹):

 11 candidates found
 3.5±1.5 expected background
 2.4 σ significance

DØ (400 pb⁻¹)
 0 observed
 1.6±0.6 expected

DØ Run II Preliminary (MeV/c² Signal region Sideband 1 Sideband 2 Events/5 0.6 5 4.8 5.2 5.4 5.6 5.8 6 **Invariant mass** $(\mu^+ \mu^- \phi)$ [GeV/c²] M.Rescigno -

BR $(B \rightarrow \mu\mu h)$

Good agreement & similar uncertainty with:

Babar PRD 73, 092001 (2006) (208 fb⁻¹ → ~10 μμK⁺, ~15μμK^{*0})

■ Belle hep-ex/0410006 (250 fb⁻¹ \rightarrow ~40 µµK⁺, ~40µµK^{*0})

■ BR(B⁺ \rightarrow µµK⁺) = [0.72 ± 0.15(stat.) ± 0.05(sys.)]x10⁻⁶ (45 ev.) = BP(B⁰) > wK^{*}) = [0.92 ± 0.21(stat.) ± 0.10(sys.)]x10⁻⁶ (20 syl)

■ BR($B^0 \rightarrow \mu \mu K^*$) = [0.82 ± 0.31(stat.) ± 0.10(sys.)]x10⁻⁶ (20 ev.)

■ BR($B_s \rightarrow \mu \mu \phi$) <2.4 x10⁻⁶ @ 90% C.L.

 $= [1.16 \pm 0.56(\text{stat.}) \pm 0.42(\text{sys.})] \times 10^{-6}$

■ Improve upon DØ limit (400 pb⁻¹) BR($B_s \rightarrow \mu \mu \phi$) < 3.3 x 10⁻⁶ @ 90% C.L.

Summary

■ CDF/DØ analyzed ~800 pb⁻¹ of Run II data searching for B→µµ signal:

- Current limits in the 10⁻⁸ territory
- No major obstacle in pushing down limits with increasing exposure
- Significantly improved analysis with >1 fb⁻¹ data sample
- Constraining more & more New Physics...

CDF/DØ entering the b→sll arena:
 New solid B+→μμK signal from CDF
 A 2.4 σ excess in the B_s→μμφ reported from CDF
 U.L. limit close to SM prediction

1.5 fb⁻¹ on tape: more to come...

BACKUP

MB vs Likelihood Ratio

D0 SENSITIVITY FOR 700 pb⁻¹

 Obtain a sensitivity (w/o unblinding) w/o changing the analysis

 Combine "old" Limit with obtained sensitivity

Signal m_{µµ} Spectra

Mass spectra not corrected for efficiency/background
 Resonance veto:

- $\Box 2.9 < m_{\mu\mu} < 3.2$ (J/ ψ)
- **□** 3.6<m_{µµ}<3.75 (ψ')
- D (D+,Ds) any 2(3) track combination within 25 MeV of PDG mass

CDF trigger architecture

Crossing: 396 ns: 2.5 MHz

Dataflow of CDF "Deadtimeless" Trigger and DAQ

