Unitarity Triangle fit and new physics

Marcella Bona

Laboratoire d'Annecy-le-vieux de Physique des Particules

on behalf of the *UTfit Collaboration*

M.B., M. Ciuchini, E. Franco, V. Lubicz, G. Martinelli, F. Parodi, M. Pierini, P. Roudeau, C. Schiavi, L. Silvestrini, V. Sordini, A. Stocchi, V. Vagnoni http://www.utfit.org

IV CKM Workshop, Nagoya, Japan December 12th, 2006

ckm matrix and unitarity triangle $V_{CKM} = \begin{pmatrix} Vud & Vus & Vub \\ Vcd & Vcs & Vcb \\ Vtd & Vts & Vtb \end{pmatrix} \simeq \begin{pmatrix} 1 - \frac{\lambda^2}{2} & \lambda & A\lambda^3(\overline{\rho} - i\overline{\eta}) \\ -\lambda & 1 - \frac{\lambda^2}{2} & A\lambda^2 \\ A\lambda^3(1 - \overline{\rho} - i\overline{\eta}) & -A\lambda^2 & 1 \end{pmatrix}$ $V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* = 0$ $lpha=\pi-eta-\gamma$ b normalized: $\bar{\rho} + i\bar{\eta}$ $B^{o} \rightarrow \pi\pi, \rho\pi$ normalized: $1 - \bar{\rho} - i\bar{\eta}$

outline

see: G. Martinelli in this session

summary of the SM fit (very quickly)
few words on the'' *tension*'' (also very quickly)
new physics with the model independent analysis:

new new-physics-oriented constraints
results in K, B_d, B_s sectors for NP parameters

MFV scenario analysis and results

UT fit and new physics

the method	and the inpu	its:	Bayes Theorem
j	$f(ar{ ho},ar{\eta},X c_1,$	$(,c_m) \sim$	$\prod \ f_j(\mathcal{C} ar{ ho},ar{\eta},X)*$
$X\equiv x_1,,x_n=n$	m_t, B_K, F_B, \dots	<i>j</i>	=1,m
$\mathcal{C}\equiv c_1,,c_m=\epsilon$	$,\Delta m_d/\Delta m_s,A_C$	$_{CP}(J/\psi K_S),$	$\prod f_i(x_i)f_0(\bar{\rho},\bar{\eta})$
	· · · · · · · · · · · · · · · · · · ·		=1,N
(b ightarrow u)/(b ightarrow c)	$ar{ ho}^2+ar{\eta}^2$	$ar{\Lambda}, oldsymbol{\lambda}_1, oldsymbol{F}(1), $	Standard Model +
ϵ_K	$ar{\eta}[(1-ar{ ho})+P]$	B_K	Lattice QCD
Δm_d	$(1-ar{ ho})^2+ar{\eta}^2$	$f_B^2 B_B$	m_t from quarks to hadrons
$\Delta m_d/\Delta m_s$	$(1-ar{ ho})^2+ar{\eta}^2$	ξ	y —
$A_{C\!P}(J/\psi K_S)$	$\sin 2eta$	<mark>M. Bona</mark> et a	<i>l.</i> (UTfit Collaboration)
See also G. Ma V. Lu IV CKM Work M. Pie	: artinelli at this ses bicz at WG4 (Wea erini at WG joint ;	sion, d 13) JHEP 0507 M. Bona <i>et a</i> JHEP 0603 session (Thur 14)	:028,2005 hep-ph/0501199 l. (UTfit Collaboration) :080,2006 hep-ph/0509219 4

LEP-style analysis in the ρ - η plane:

angle constraints in the ρ-η plane:

UT fit and new physics

the global fit:

M. Bona *et al.* (UTfit Collaboration) JHEP 0507:028,2005 hep-ph/0501199

tension in the current results:

indirect measurement exploiting V_{ub}

(Best SM prediction)

fit with NP-independent constraints

model independent analysis

New Physics in $\Delta F=2$ amplitudes can be parameterized in a simple general form:

model independent approach in the fit

$$\chi = f_d \frac{\beta_d}{\langle \beta \rangle} \chi_d + f_s \frac{\beta_s}{\langle \beta \rangle} \chi_s$$
$$\bar{\chi} = f_d \frac{\beta_d}{\langle \beta \rangle} \bar{\chi}_d + f_s \frac{\beta_s}{\langle \beta \rangle} \chi_s$$

admixture of \underline{B}_{d} and \underline{B}_{s} dependent on $\overline{\rho}$ and $\overline{\eta}$ and on NP effects $(C_{Bd}, \phi_{Bd}, C_{Bs}, \phi_{Bs})$

M. Bona *et al.* (UTfit Collaboration)

IV CKM Workshop, December 12th, 2006 Phys.Rev.Lett.97:151803,2006 hep-ph/0605213

results of the model independent approach

results in the B_d and K sectors:

NP in $\Delta B=2$ and $\Delta S=2$ could be up to 50% with respect to the SM only if it has the same phase of the SM

exploring new physics in the B_s sector:

to include $\Delta F = 1$ **NP contributions**

$$\Delta \Gamma_{S} / \Gamma_{S}$$

$$\frac{\Delta \Gamma_{q}}{\Delta m_{q}} = -\frac{\kappa}{C_{B_{q}}} \left\{ \cos\left(2\phi_{B_{q}}\right) \left(n_{1} + \frac{n_{6}B_{2} + n_{11}}{B_{1}}\right) - \frac{\cos\left(\phi_{q}^{SM} + 2\phi_{B_{q}}\right)}{R_{t}^{q}} \left(n_{2} + \frac{n_{7}B_{2} + n_{12}}{B_{1}}\right) + \frac{\cos\left(2(\phi_{q}^{SM} + \phi_{B_{q}})\right)}{R_{t}^{q^{2}}} \left(n_{3} + \frac{n_{8}B_{2} + n_{13}}{B_{1}}\right) + \cos\left(\phi_{q}^{\text{Pen}} + 2\phi_{B_{q}}\right)C_{q}^{\text{Pen}} \left(n_{4} + n_{9}\frac{B_{2}}{B_{1}}\right) - \cos\left(\phi_{q}^{SM} - \phi_{q}^{\text{Pen}} + 2\phi_{B_{q}}\right)\frac{C_{q}^{\text{Pen}}}{R_{t}^{q}} \left(n_{5} + n_{10}\frac{B_{2}}{B_{1}}\right)\right) (7)$$
from angular analysis of B_{S} \rightarrow J/\psi\phi
in presence of new physics, the experimental measurement is actually a measurement of $\Delta \Gamma_{q} \cos 2(\phi_{B_{q}} - \beta_{q})$
we use the CDF-only result

additional constraints the NP in the B_S sector:

flavour specific B_s lifetime

we use the CDF-only result

we now use τ_{B_S} only from the study of B_S decays to CP eigenstates

which is connected to the values of Γ_s and $\Delta\Gamma_s$ by this relation

$$au_{B_s}^{FS} = rac{1}{\Gamma_s} rac{1-\left(rac{\Delta\Gamma_s}{2\Gamma_s}
ight)^2}{1+\left(rac{\Delta\Gamma_s}{2\Gamma_s}
ight)^2}$$

time-dipendent angular analysis in $B_s \rightarrow J/\psi \phi$

D0 provided simultaneous bounds on β_S , $\Delta\Gamma$ and Γ : we use the experimental likelihood including the 3x3 correlation matrix and we don't use D0 values in the other constraints (in order not to double count the measurements)

18

Marcella Bona

UT fit and new physics

Are there new sources of CPV?

- New sources of CPV in s \rightarrow d and/or b \rightarrow d transitions are
 - strongly constrained by the UT fit
 - "unnecessary", given the great success and consistency of the fit

L. Silvestrini LP05

- New sources of CPV in b \rightarrow s transitions are
 - much less (un-) constrained by the UT fit
 - natural in many flavour models, given the strong breaking of family SU(3)

Pomarol, Tommasini; Barbieri, Dvali, Hall; Barbieri, Hall; Barbieri, Hall, Romanino; Berezhiani, Rossi; Masiero et al; ...

- hinted at by v's in SUSY-GUTs

Baek et al.; Moroi; Akama et al.; Chang, Masiero, Murayama; Hisano, Shimizu; Goto et al.; ...

exploring MFV scenario: starting from UUT

MFV = no additional flavour mixing only mixing processes are sensitive to NP Universal Unitarity Triangle Buras et al. hep-ph/0007085

UT fit and new physics

 $\overline{\mathbf{d}}$.

 $S_0(x_t) \rightarrow S_0(x_t) + \delta S_0(x_t)$

a = 1 (as a reference) $\Lambda_0 = 2.4 \text{ TeV}$

 $\delta S_0(x_t) = 4 a \left(rac{\Lambda_0}{\Lambda}
ight)^2$

t

d

Ъ

t

Scale of NP can be indirectly tested

In models with one Higgs doublet or low/moderate $\tan\beta$ NP enters as additional contribution to the top box diagram

remaining constraints b —

(\mathcal{E}_{K} , Δm_{d} , and Δm_{s})

probe NP in mixing

summary and conclusion

- b → d transition: given the enormous quantity of results the B factories have already achieved, the generalization of the UT analysis beyond the SM is already strongly effective in limiting the NP parameter space.
 - it gives serious constraints on model building
 it points to MFV
- → s transitions are starting to be impressively constrained, thanks to new measurements from the Tevatron:

 \Rightarrow from CDF: ΔΓ_s/Γ_s, flavour specific τ_{B_s}

- \Rightarrow from D0: 3-dimensional β_s, ΔΓ and Γ bound
- in the MFV scenario it is possible to turn UT analysis into a probe for NP scale
- future scenarios..

see:
M. Pierini and V. Vagnoni
in WG joint session

back-up slides

MFV bound from radiative decays

NP in MFV scenarios can be parameterized with few real parameters, shifts of the master functions in

- ➡ Z vertex
- cromomagnetic penguin

Relevant contributions in rare leptonic and radiative decays

- 🔶 box diagrams
- 🔶 gluonic penguin

Once CKM is known, we can bound NP with rare decays. At small/moderate $tan\beta$, all the effects on leptonic/radiative modes from two parameters:

- $+\Delta C$: NP in Z vertex (bound from b→sγ)
- → ΔC⁷_{eff}: NP in cromomagnetic penguin (bound from b→sll)

Predictions on rare decays can be obtained from this. This peculiar correlation can be tested with new measurements

> C. Bobeth *et al.* Nucl.Phys.B726:252-274,2005 hep-ph/0505110

