

Study of B-> K h h Decays at Belle

Pavel Krokovny, KEK

- @ Introduction
- @ Three-Body Charmless Decays
- Ø Dalitz Analysis Results
- **@** Search for DCPV in B^{\pm} ->K[±] $\pi^{+}\pi^{-}$
- @ Summary

B -> K h h

P. Krokovny

Classification

The dominant contributions to various 3-body final states:

b->s penguin transition contributes only to final states with odd number of kaons (s-quarks): $K\pi\pi$, KKK

b->u tree and b->d penguin transitions contribute mainly to final states with even number of kaons (s-quarks): $\pi\pi\pi$, KK π . Contribution to states with odd number of kaons is Cabibbo suppressed

"wrong flavor" finals states such as $K^+K^+\pi^-$ and $K^-\pi^+\pi^+$ are expected to be exceedingly small (10⁻¹¹) in the SM -> good place to search for NP

P. Krokovny

In multi-body decays additional degrees of freedom appears. In the simplest case of the three-body $B - h_1 h_2 h_3$ decay, where h_i are all spin-O particles there are two additional degrees of freedom:

 $s_{ij} = m^2(h_ih_j)$ - three combinations

From energy-momentum conservation:

 $s_{12} + s_{13} + s_{23} = M_B^2 + m_1^2 + m_2^2 + m_3^2$

In the general case there is a set of intermediate resonances possible ...

Dalitz Analysis Basics

$B^+ \rightarrow K^+ \pi^+ \pi^-$: Fitting The Signal BELLE

 $B \rightarrow K h h$

P. Krokovny

B⁰->K_Sπ⁺π⁻: Signal Yield

 $L = 353 \text{ fb}^{-1}$

No flavor tagging applied - measuring average fractions

B -> K h h

P. Krokovny

B⁺->K⁺π⁺π⁻: Fitting The Signal

L=140 fb⁻¹

B -> K h h

P. Krokovny

Summary of two-body BF's

L=140 fb⁻¹

BELLE

Mode	${\cal B}(B^+ o Rh^+) imes {\cal B}(R o h^+h^-) imes 10^6$	${\cal B}(B^+ o Rh^+) imes 10^6$
$K^+\pi^+\pi^-$ charmless total	_	$46.6 \pm 2.1 \pm 4.3$
$K^*(892)^0\pi^+,K^*(892)^0 o K^+\pi^-$	$6.55 \pm 0.60 \pm 0.60 \substack{+0.38 \\ -0.57}$	$9.83 \pm 0.90 \pm 0.90 ^{+0.57}_{-0.86}$
$K_0^*(1430)\pi^+,K_0^*(1430) o K^+\pi^-$	$27.9 \pm 1.8 \pm 2.6^{+8.5}_{-5.4}$	$45.0 \pm 2.9 \pm 6.2^{+13.7}_{-\ 8.7}$
	$(5.12 \pm 1.36 \pm \mathbf{0.49^{+1.91}_{-0.51}})$	$(8.26 \pm 2.20 \pm 1.19^{+3.08}_{-0.82})$
$K^*(1410)\pi^+, K^*(1410) o K^+\pi^-$	< 2.0	_
$K^*(1680)\pi^+,K^*(1680) o K^+\pi^-$	< 3.1	-
$K_2^*(1430)\pi^+,K_2^*(1430) o K^+\pi^-$	< 2.3	_
$ ho^0(770)K^+, ho^0(770) o\pi^+\pi^-$	$4.78 \pm 0.75 \pm 0.44 ^{+0.91}_{-0.87}$	$4.78 \pm 0.75 \pm 0.44 ^{+0.91}_{-0.87}$
$f_0(980)K^+,f_0(980) o\pi^+\pi^-$	$7.55 \pm 1.24 \pm 0.69^{+1.48}_{-0.96}$	_
$f_2(1270)K^+,f_2(1270) o\pi^+\pi^-$	< 1.3	_
Non-resonant	-	$17.3 \pm 1.7 \pm 1.6^{+17.1}_{-7.8}$
$K^+K^+K^-$ charmless total	_	$30.6\pm1.2\pm2.3$
$\phi K^+,\phi ightarrow K^+K^-$	$4.72 \pm 0.45 \pm 0.35 ^{+0.39}_{-0.22}$	$9.60 \pm 0.92 \pm 0.71^{+0.78}_{-0.46}$
$\phi(1680)K^+,\phi(1680) o K^+K^-$	< 0.8	
$f_0(980)K^+,f_0(980) o K^+K^-$	< 2.9	
$f_2'(1525)K^+, f_2'(1525) \to K^+K^-$	< 2.1	
$a_2(1320)K^+, a_2(1320) o K^+K^-$	< 1.1	
Non-resonant	-	$24.0 \pm 1.5 \pm 1.8^{+1.9}_{-5.7}$
$\chi_{c0}K^+,\chi_{c0} o\pi^+\pi^-$	$1.37 \pm 0.28 \pm 0.12^{+0.34}_{-0.35}$	-
$\chi_{c0}K^+,\chi_{c0} o K^+K^-$	$0.86 \pm 0.26 \pm 0.06^{+0.20}_{-0.05}$	-
	$(2.58 \pm 0.43 \pm 0.19^{+0.20}_{-0.05})$	-
$\chi_{c0}K^+ ext{ combined}$	-	$196 \pm 35 \pm 33^{+197}_{-26}$

Phys. Rev. D 71, 092003 (2005)

CKM 2006, Nagoya

B -> K h h

P. Krokovny

Summary of two-body BF's II

L = 353 fb⁻¹

Mode	${\cal B}(B o Rh) imes {\cal B}(R o hh) imes 10^6$	${\cal B}(B o Rh) imes 10^6$
$K^0_S \pi^+ \pi^- ext{ charmless total}$		$47.5\pm2.4\pm3.7$
$K^*(892)^+\pi^-,K^*(892)^+ o K^0\pi^+$	$5.61 \pm 0.72 \pm 0.43 ^{+0.43}_{-0.29}$	$8.42 \pm 1.08 \pm 0.65^{+0.64}_{-0.43}$
$K_0^*(1430)^+\pi^-,K_0^*(1430)^+ o K^0\pi^+$	$30.8 \pm 2.4 \pm 2.4 ^{+0.8}_{-3.0}$	$49.7 \pm 3.8 \pm 3.8 ^{+1.2}_{-4.8}$
$K^*(1410)^+\pi^-,K^*(1410)^+ o K^0\pi^+$	< 3.8	_
$K^*(1680)^+\pi^-,K^*(1680)^+ o K^0\pi^+$	< 2.6	_
$K_2^*(1430)^+\pi^-,K_2^*(1430)^+ o K^0\pi^+$	< 2.1	-
$ ho(770)^0 K^0, ho(770)^0 o\pi^+\pi^-$	$6.13 \pm 0.95 \pm 0.47 ^{+1.00}_{-1.05}$	$6.13 \pm 0.95 \pm 0.47^{+1.00}_{-1.05}$
$f_0(980)K^0,f_0(980) o\pi^+\pi^-$	$7.60 \pm 1.66 \pm 0.59^{+0.48}_{-0.67}$	_
$f_2(1270)K^0,f_2(1270) o\pi^+\pi^-$	< 1.4	_
Non-resonant		$19.9 \pm 2.5 \pm 1.5^{+0.7}_{-1.2}$
$\chi_{c0}K^0,\chi_{c0} o\pi^+\pi^-$	< 0.56	< 113

BELLE-CONF-577, hep-ex/0509047

DCPV in B[±]->K[±] π ⁺ π ⁻

Null Asymmetry Tests

DCPV in B[±]->K[±] π ⁺ π ⁻

L=353 fb⁻¹

Dalitz analysis is then performed with an amplitude sensitive to the charge of the B meson ...B -> K h hP. KrokovnyCKM 2006, Nagoya

Note that CP violation can be observed even in the case of $A_{CP}=0$ (that is $\delta=90^{\circ}$ but $b\neq 0$) - possible only in three-body decays !

P. Krokovny

DCPV with B[±]->K[±] π ⁺ π ⁻

DCPV in B[±]->K[±] π ⁺ π ⁻: Results

Channel	CP averaged	$\delta,$	b	arphi,	$A_{CP},$	Significance,
	fraction, $\%$	degrees		degrees	%	σ
$K^{*}(892)^{0}\pi^{\pm}$	$13.0\pm0.8^{+0.5}_{-0.7}$	0 (fixed)	$0.078 \pm 0.033^{+0.012}_{-0.003}$	$-18\pm44^{+5}_{-13}$	$-14.9\pm6.4^{+0.8}_{-0.8}$	2.6
$K_0(1430)^0\pi^{\pm}$	$65.5 \pm 1.5^{+2.2}_{-3.9}$	$55\pm4^{+1}_{-5}$	$0.069 \pm 0.031^{+0.010}_{-0.008}$	$-123\pm16^{+4}_{-5}$	$+7.5\pm3.8^{+2.0}_{-0.9}$	2.7
$ ho(770)^0 K^{\pm}$	$7.85 \pm 0.93 \substack{+0.64 \\ -0.59}$	$-21 \pm 14^{+14}_{-19}$	$0.28 \pm 0.11^{+0.07}_{-0.09}$	$-125\pm32^{+10}_{-85}$	$+30\pm11^{+11}_{-4}$	3.9
$\omega(782)K^{\pm}$	$0.15\pm0.12^{+0.03}_{-0.02}$	$100\pm 31^{+38}_{-21}$	0 (fixed)	<u></u>		-
$f_0(980)K^{\pm}$	$17.7 \pm 1.6^{+1.1}_{-3.3}$	$67 \pm 11^{+10}_{-11}$	$0.30 \pm 0.19^{+0.05}_{-0.10}$	$-82\pm8^{+2}_{-2}$	$-7.7\pm6.5^{+4.1}_{-1.6}$	1.6
$f_2(1270)K^{\pm}$	$1.52 \pm 0.35 \substack{+0.22 \\ -0.37}$	$140 \pm 11^{+18}_{-7}$	$0.37 \pm 0.17^{+0.11}_{-0.03}$	$-24\pm29^{+14}_{-20}$	$-59\pm22^{+3}_{-3}$	2.7
$f_X(1300)K^{\pm}$	$4.14 \pm 0.81^{+0.31}_{-0.30}$	$-141 \pm 10^{+8}_{-9}$	$0.12\pm0.17^{+0.04}_{-0.07}$	$-77\pm56^{+88}_{-43}$	$-5.4\pm16.5^{+10.3}_{-2.4}$	1.0
Non-Res.	$34.0\pm2.2^{+2.1}_{-1.8}$	$\delta_1^{\rm nr} = -11 \pm 5^{+3}_{-3}$	0 (fixed)	_	_	—
		$\delta_2^{\rm nr} = 185 \pm 20^{+62}_{-19}$				
$\chi_{c0}K^{\pm}$	$1.12\pm0.12^{+0.24}_{-0.08}$	$-118\pm24^{+37}_{-38}$	$0.15\pm0.35^{+0.08}_{-0.07}$	$-77\pm94^{+154}_{-11}$	$-6.5\pm19.6^{+2.9}_{-1.4}$	0.7

PRL 96, 251803 (2006)

P. Krokovny

DCPV in B±->p(770)^oK±

Analysis of B meson decays to three-body charmless hadronic final states have been done: branching fractions for 6 channels are measured; upper limits for 5 more channels are set;

Dalitz analysis for three three-body modes have been performed: branching fractions for >20 quasi-two-body channels are measured;

First evidence for CP violation in charged meson decays is observed in B[±]->p(770)⁰K[±]

Three-Body Branching Fractions

3-Body Mode	Belle	BaBar	CLEO
K⁺π+π-	53.6±3.1±5.1	61.4±2.4±4.5	-
Κ ⁰ π+π-	45.4±5.2±5.9	43.0±2.3±2.3	50 ⁺¹⁰ _9±7
K⁺K⁺K⁻	32.8±1.8±2.8	29.6±2.1±1.6	-
K⁰K⁺K⁻	28.3±3.3±4.0	23.8±2.0±1.6	-
K _S K _S K⁺	13.4±1.9±1.5	10.7±1.2±1.0	-
K _s K _s K _s	4.2 ^{+1.6} -1.3 [±] 0.8	6.5±0.8±0.8	-
K⁺K⁻π+	<13	<6.3	-
K ⁰ K ⁻ π+	<18	-	<21
Κ _S Κ _S π+	<3.2	-	-
Κ⁻π+π+	< 4.5	<1.8	-
K⁺K⁺π-	<2.4	<1.3	-

in units of 10⁻⁶

B⁺->**K**⁺π⁺π⁻

CKM 2006, Nagoya

1

0.5

1/17

0.4

 $B^+ \rightarrow K_s K_s K^+$

total background

BB background

0.3

 $B^0 \rightarrow K_s K_s K_s$

total background

0.4

0.5

data

0.2

data

0.2

0.3

0.0

0.0

0.1

 $\Delta \mathbf{E}$ (GeV)

0.1

 $\Delta \mathbf{E}$ (GeV)

B⁺->K⁺K⁺K⁻: Fitting The Signal

Model KKK-B_J:

 $S_{BJ}(KKK) = S_{AJ}(KKK) + A_{NR}$ A_{NR} Parameterizations used: $A_{NR}(s_{13}, s_{23}) = a_1 e^{i\delta}$ $A_{NR}(s_{13}, s_{23}) = a_1[(1/s_{13})^{\beta} + (1/s_{23})^{\beta}]e^{i\delta}$

$$A_{NR}(s_{13}, s_{23}) = a_1(e^{-\beta s_{13}} + e^{-\beta s_{23}})e^{i\delta}$$

B -> K h h

0

L=140 fb⁻¹

P. Krokovny

B⁰->K⁺K⁻K₅: b->u Contribution

<u>B+->K+K+K-</u>

<u>B+->K+K-π+</u>

B->KK π provides a sensitive probe for the b->u contribution in B->KKK

P. Krokovny

->K⁺K⁻K₅: b->u Contribution-cont'd

We can estimate the b->u contribution as:

$$rac{|\mathcal{A}_{b
ightarrow u}^{KKK}|^2}{|\mathcal{A}_{ ext{total}}^{KKKK}|^2}\simeq rac{\mathcal{B}(B^+
ightarrow K^+K^-\pi^+)}{\mathcal{B}(B^+
ightarrow K^+K^-K^+)} imes an^2 heta_{ ext{C}}\left(rac{f_K}{f_\pi}
ight)^2$$

With current experimental results:

< 3% in BF

< 15% in amplitude

b->u tree contribution would probably result in quasi-two-body final states with a resonant state in K_SK^- system (such as $a_0\pi/K$) while b->s (as observed) proceed via resonances in K⁺K⁻ system -> the interference term might be suppressed and b->u contribution is significantly smaller than 15%

More analysis (experimental & theoretical) is required

BaBar: hep-ex/0407013

Mode	Yield	$\epsilon(\%)$	$\prod \mathcal{B}_i(\%)$	Signif.	$\mathcal{B}(10^{-6})$	$UL(10^{-6})$
$a_0^-(\eta_{\gamma\gamma})\pi^+$	18^{+11}_{-10}	18.8	39.4	1.3	$2.3^{+1.7}_{-1.5}\pm0.9$	
$a_0^-(\eta_{3\pi})\pi^+$	15^{+9}_{-8}	15.5	22.6	1.6	$3.9^{+2.9}_{-2.5}\pm1.0$	
$a_0^-\pi^+$				2.0	$2.8^{+1.5}_{-1.3}\pm 0.7$	< 5.1
$a^0(\eta_{\gamma\gamma})K^+$	2^{+6}_{-4}	17.9	39.4	0.1	$0.0^{+0.9}_{-0.6}\pm 0.3$	
$a_0^-(\eta_{3\pi})K^+$	13^{+8}_{-6}	14.9	22.6	1.1	$3.1^{+2.5}_{-2.1} \pm 1.9$	
$a_0^-K^+$				0.4	$0.4^{+1.0}_{-0.8}\pm0.2$	< 2.1
$a^0(\eta_{\gamma\gamma})\overline{K}{}^0$	-12^{+8}_{-6}	21.4	13.5	0.0	$-3.7^{+2.9}_{-2.3}\pm0.9$	
$a_0^-(\eta_{3\pi})\overline{K}{}^0$	0^{+7}_{-5}	15.8	7.9	0.5	$2.7^{+6.1}_{-4.4} \pm 1.9$	
$a_0^- \overline{K}{}^0$				0.6	$-1.5^{+2.4}_{-1.8}\pm0.8$	< 3.9
$a^0_0(\eta_{\gamma\gamma})\pi^+$	17^{+11}_{-9}	12.8	39.4	1.4	$3.1^{+2.4}_{-2.0} \pm 1.2$	
$a_0^0(\eta_{3\pi})\pi^+$	1^{+8}_{-6}	9.5	22.6	0.3	$1.2^{+3.9}_{-3.2} \pm 1.7$	
$a_0^0\pi^+$				1.4	$2.6^{+2.0}_{-1.7}\pm1.0$	< 5.8
$a^0_0(\eta_{\gamma\gamma})K^+$	0^{+5}_{-3}	12.4	39.4	0.3	$0.3^{+1.1}_{-0.6}\pm 0.4$	
$a^0_0(\eta_{3\pi})K^+$	6^{+7}_{-5}	9.1	22.6	0.5	$1.9^{+3.8}_{-2.9}\pm2.5$	
$a_{0}^{0}K^{+}$				0.4	$0.4^{+1.1}_{-0.7}\pm 0.3$	< 2.5
$a^0_0(\eta_{\gamma\gamma})K^0$	0^{+6}_{-5}	15.0	13.3	0.5	$1.4^{+3.5}_{-2.4} \pm 1.2$	
$a^0_0(\eta_{3\pi})K^0$	4^{+5}_{-4}	9.7	7.8	1.2	$6.6^{+7.8}_{-5.4}\pm2.8$	
$a_{0}^{0}K^{0}$				1.0	$2.8^{+3.1}_{-2.4}\pm1.1$	< 7.8

See also: Grossman,Ligeti,Nir,Quinn Phys. Rev. D68 B -> K h h P. Krokovny

Since $B^0 - K^*K^-K_s$ is 3-body decay, the final state is a mixture of CP=±1

$CP = \pm 1$ fraction is equal to that of $\lambda = even/odd$

P. Krokovny

B⁰->K⁺K⁻K₅: CP Mixture - cont'd

Assuming isospin symmetry (b->s conserves isospin; b->u is small)

$$\mathcal{B}(B^+ \to K^+ K^0 \overline{K}{}^0) = \mathcal{B}(B^0 \to K^0 K^+ K^-) \times \frac{\tau_{B^+}}{\tau_{B^0}}$$

l-even fraction in |K⁺K⁻> is equal to that in |K⁰K⁰> system

$$\frac{|K^{0}\overline{K}^{0}\rangle}{\mathbf{CP} = +1} = \frac{\alpha}{\sqrt{2}} \left(\frac{|K_{S}K_{S}\rangle + |K_{L}K_{L}\rangle}{l = \mathbf{even}} \right) + \beta |K_{S}K_{L}\rangle$$

 $|K^{+}K^{0}\overline{K}^{0}\rangle = \frac{\alpha}{\sqrt{2}} \left(|K^{+}K_{S}K_{S}\rangle + |K^{+}K_{L}K_{L}\rangle \right) + \beta |K^{+}K_{S}K_{L}\rangle$

First measurement with 78 fb⁻¹:

$$\alpha^{2} = 2 \frac{\mathcal{B}(B^{+} \rightarrow K^{+} K_{S} K_{S})}{\mathcal{B}(B^{0} \rightarrow K^{0} K^{+} K^{-})} \times \frac{\tau_{B^{0}}}{\tau_{B^{+}}}$$
$$= \frac{\mathcal{B}(B^{+} \rightarrow K^{+} K_{S} K_{S})}{\mathcal{B}(B^{0} \rightarrow K_{S} K^{+} K^{-})} \times \frac{\tau_{B^{0}}}{\tau_{B^{+}}}$$
$$= 1.03 \pm 0.15 (\text{stat}) \pm 0.05 (\text{syst})$$

The most resent update with 353 fb⁻¹: $f_{CP-even} = 0.93 \pm 0.09 \pm 0.05$ $B^{0} - > \phi K_{s}$ $sin 2\beta_{eff} = 0.44 \pm 0.27 \pm 0.05$ $B^{0} - > K^{+}K^{-}K_{s} (non \phi)$ $sin 2\beta_{eff} = 0.60 \pm 0.18 \pm 0.04^{+0.19}_{-0.12}$

See also: M.Gronau, J.Rosner, Phys. Lett. B564

B -> K h h

P. Krokovny