MEASURING γ WITH $B_{d,s} \rightarrow K\pi\pi$ DALITZ ANALYSES

Luca Silvestrini INFN, Rome

Introduction

The basic idea

Inclusion of Electroweak Penguins

Details about the Dalitz analysis

Conclusions

Based on:

M. Ciuchini, M. Pierini & L.S., hep-ph/0601233v4 M. Ciuchini, M. Pierini & L.S., hep-ph/0602207v2 See also M. Gronau et al., hep-ph/0608243v2,

and the talk by G. Guerrer

Special thanks to Jerome Charles!

INTRODUCTION

- One of the main goals of B physics is to measure $\gamma \approx Arg(V_{ub})$
- Two main avenues from charmless B decays:
 - Use two-body decays + theoretical info on hadronic matrix elements
 - difficult to assess theoretical uncertainty
 - Use Dalitz analyses to directly access an amplitude governed by V_{ub}
 - · theoretically clean, experimentally challenging

THE BASIC IDEA

The I=3/2 amplitude in $B_{d,s}$ decays is experimentally accessible from $B_{d(s)} \to K^+\pi^-\pi^0$ Dalitz plot

$$A_{d(s)}^{0} = A_{d(s)}(K^{*+}\pi^{-}) + \sqrt{2}A_{d(s)}(K^{*0}\pi^{0}) = -V_{ub}^{*}V_{us(d)}(E_{1,d(s)} + E_{2,d(s)})$$

$$A^{+} = \sqrt{2} A (K^{*+} \pi^{0}) + A (K^{*0} \pi^{+}) = -V_{ub}^{*} V_{us} (E_{1,d} + E_{2,d})$$

from $B^+ \rightarrow K^0 \pi^+ \pi^0$ Dalitz plot

The ratio of these amplitudes and their CP conjugates measures γ

$$R_{d(s)}^{0} = \frac{\overline{A}_{d(s)}^{0}}{A_{d(s)}^{0}} = \frac{V_{ub}V_{us(d)}^{*}}{V_{ub}^{*}V_{us(d)}} = \underbrace{\sum_{e^{-2i\gamma}} = \frac{A^{-}}{A^{+}}}_{=R^{\mp}}$$

The same argument applies to higher K* resonances

Inclusion of EW Penguins (I)

EWP's are suppressed $\sim \alpha_{\rm e}/\alpha_{\rm s}$ wrt strong penguins so they give very small corrections to b \rightarrow d $\Delta I=3/2$ amplitudes, but are enhanced by λ^{-2} wrt b \rightarrow s $\Delta I=1$ amplitudes to which they give an O(1) correction. Fortunately:

- \bullet Q₇ and Q₈ can likely be neglected, since $|C_{7,8}| << |C_{9,10}|$
- \bullet Q₉ and Q₁₀ can be eliminated from the H_{eff} at the operator level: (q=d,s)

$$Q_9^q = \frac{3}{2}(Q_1^{quu} - Q_1^{qcc}) + 3Q_2^{qcc} - \frac{1}{2}Q_3^q; \quad Q_{10}^q = \frac{3}{2}(Q_2^{quu} - Q_2^{qcc}) + 3Q_1^{qcc} - \frac{1}{2}Q_4^q$$

$$\begin{split} H_{eff} \propto & \left(V_{ub}^* V_{uq} C_+ - \frac{3}{2} V_{tb}^* V_{tq} C_+^{EW} \right) \left(Q_+^{quu} - Q_+^{qcc} \right) \\ & + \left(V_{ub}^* V_{uq} C_- + \frac{3}{2} V_{tb}^* V_{tq} C_-^{EW} \right) \left(Q_-^{quu} - Q_-^{qcc} \right) - V_{tb}^* V_{tq} H_{QCDP}^{\Delta I = 0(1/2)} \end{split}$$

Inclusion of EW Penguins (II)

The effect of the EWP's on the I=3/2 amplitudes is accounted for by the parameters

$$\kappa_{d(s)}^{\text{EW}} \equiv -\frac{3}{2} \frac{C_{+}^{\text{EW}}}{C_{+}} \frac{V_{tb}^{*} V_{ts(d)}}{V_{ub}^{*} V_{us(d)}}, \quad r_{d(s)} e^{i\theta_{d(s)}} = \frac{\langle K^{*} \pi (I = 3/2) | Q_{-}^{s(d)uu} | B_{d(s)} \rangle}{\langle K^{*} \pi (I = 3/2) | Q_{+}^{s(d)uu} | B_{d(s)} \rangle}$$

The situation is completely different for B_s and B_d decays.

For B_s we are lucky:

- κ^{EW}_{s} = (0.4+2.8i) 10⁻², completely negligible
- $-r_s=0$ due to isospin (Gronau et al.)

forget about EWP's in B_s case L. Silvestrini - CKM2006

Inclusion of EW Penguins (III)

For B_d decays we are not so lucky:

- $-\kappa^{EW}_{d}$ =(-0.35+0.53i), an O(1) correction
- r_d not zero by flavour symmetry, but small in factorization: $r = \left| \frac{f_{K^*} F_0^{B \to \pi} f_\pi A_0^{B \to K^*}}{f_{K^*} F_0^{B \to \pi} + f_\pi A_0^{B \to K^*}} \right| \lesssim 0.05$

The ratios R now given by

$$R^{\mp}, R_d = e^{-2i\left(\gamma + \arg(1 + \kappa_d^{\text{EW}})\right)} \frac{1 + \frac{1 - \kappa_d^{\text{EW}*} \frac{C_-}{C_+} r_d e^{i\theta_d}}{1 + \frac{1 - \kappa_d^{\text{EW}} \frac{C_-}{C_+} r_d e^{i\theta_d}}{1 + \kappa_d^{\text{EW}} \frac{C_-}{C_+} r_d e^{i\theta_d}}}$$

Inclusion of EW Penguins (IV)

We obtain a linear relation between ρ and η :

$$\bar{\eta} = -\tan(\frac{1}{2} Arg R^0)(\bar{\rho} - \bar{\rho}_0)$$

with

$$\bar{\rho}_0 = -\left[\frac{3C_+^{\text{EW}}}{2C_+ + 3C_+^{\text{EW}}} - \frac{12C_+^{\text{EW}}C_- r_d \cos \theta_d}{(2C_+ + 3C_+^{\text{EW}})^2}\right] \frac{1 - \lambda^2}{\lambda^2} + \mathcal{O}(\lambda^2)$$

for phenomenology, vary r≈0-0.3

DETAILS OF THE DALITZ ANALYSIS

The method requires to extract both B and B decay amplitudes from $B_d \to K^+\pi^-\pi^0$, $B_s \to K^-\pi^+\pi^0$ or $B^+ \to K_s\pi^+\pi^0$ and the CP-conjugated channels. Need to fix the relative phase of B and anti-B decay amplitudes!

For B_d decays, time-dependent $B_d \to K_s \pi^+ \pi^-$ fixes the relative phase, exploiting interference of $K^{*+}\pi^-$ and $K^{*-}\pi^+$ with $\rho^0 K_s$ and other $\pi^+ \pi^-$ resonances. Then use isospin to fix the relative phase of B^+ and B^- amplitudes.

Bound on CKM from Arg(R°)

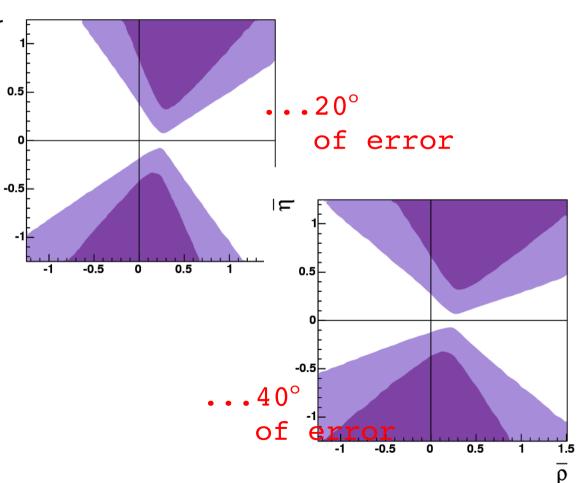
BaBar, hep-ex/0408073

Arg(R°) is already measured with an error of 18° . We do not have the $K_{\rm s}\pi\pi$ Dalitz plot yet, so the relative phase of B and \overline{B} cannot be fixed.

We can assume a perfect agreement to SM and ...

Precision would be already comparable to γ from DK

using r≈0-0.3



DETAILS OF THE DALITZ ANALYSIS II

For B_s decays, no need for a time-dependent analysis. The relevant process is again B_s \rightarrow K_s π^+ π^- , exploiting interference of K*+ π^- and K*- π^+ with ρ^0 K_s and other π^+ π^- resonances.

At hadron colliders, sensitivity is given by the Re $\lambda \Delta \Gamma / \Gamma$ term in the time-integrated rate $(\lambda=q/p \overline{A}/A)$. Of course, a time-dependent analysis would also help.

DETAILS OF THE DALITZ ANALYSIS III

At (super-)B factories running at the Y(5s), two possibilities:

untagged integrated analysis: sensitivity is given by the Re λ $\Delta\Gamma/\Gamma$ term in the time-integrated rate.

tagged integrated analysis, separating $\Delta t>0$ from $\Delta t<0$: sensitivity is given by the Re λ ($\Delta \Gamma/\Gamma$) and Im λ ($\Gamma/\Delta m$) terms in the time-integrated rate.

SENSITIVITY TO NP

- Extraction of γ from B_d decays:
 - independent of NP in QCD penguins
 - sensitive to NP in EWP's:
 - if only in $C_{9,10}$: observe a discrepancy with γ from tree-level decays
 - if sizable contribution to $C_{7,8}$ or new operators: also observe $|R| \neq 1$ (at present, $|R^0| = 0.96 \pm 0.17$)
- Extraction of γ from B_s decays:
 - independent of any loop-mediated NP (unless huge enhancement of EWP's - already excluded)

CONCLUSIONS

- B decays to $K\pi\pi$ give us the opportunity to access directly the phase γ of V_{ub} .
- B_d decays affected by electroweak penguins, but th uncertainty still smaller than expected experimental error; can be improved with data. Sensitive to NP in EWP's
- B_a decays theoretically clean, unaffected by NP - on the same footing of B \rightarrow D channels!
- Look forward to the first experimental results!