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Vub B → π"ν̄
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dq2
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Define 

Dispersion relations

Perturbative QCD 
(OPE)

Inequality

Related by crossing to decay form factor

Bound on Form factor 

Dispersion Relations

χ(0) =
1
2

∂2ΠT
J

∂(q2)2
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=
1
π
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0
dt

Im ΠT
J (t)

t3

t+ = (mB + mπ)2

Πµν
J (q) =

1
q2
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q2
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functional forms. The variable

z(t, t0) =
√

t+ − t−
√

t+ − t0√
t+ − t +

√
t+ − t0

, (6)

maps t+ < t <∞ onto |z| = 1 and −∞ < t < t+ onto z ∈
[−1, 1]. t0 is a free parameter that can be chosen to attain
the tightest possible bounds, and it defines z(t0, t0) = 0.
We take t0 = 0.65 t− giving −0.34 ≤ z ≤ 0.22 for the
B → π range. In Eq. (5) the “Blaschke” factor P (t)
eliminates sub-threshold poles, so P (t) = 1 for f0, while
P (t) = z(t; m2

B∗) for f+ due to the B∗ pole. Finally, the
“outer” function is given by

φ(t, t0)=
√

nI

Kχ(0)
J

(√
t+−t+

√
t+−t0

) (t+−t)(a+1)/4

(t+−t0)1/4

×
(√

t+−t+
√

t+
)−(b+3)(√

t+−t+
√

t+−t−
)a/2

, (7)

where nI = 3/2 and for f+: (K = 48π, a = 3, b = 2),
while for f0: (K = 16π/(t+t−), a = 1, b = 1). Here χ(0)

J
corresponds to the lowest moment of Π(q2) computed
with an OPE. At two loops in terms of the pole mass
and condensates and taking µ = mb [11, 13]

χ(0)
f+

=
3
[
1+1.140 αs(mb)

]

32π2m2
b

−mb 〈ūu〉
m6

b

− 〈αsG2〉
12πm6

b

,

χ(0)
f0

=
[
1+0.751 αs(mb)

]

8π2
+

mb 〈ūu〉
m4

b

+
〈αsG2〉
12πm4

b

, (8)

with mb〈ūu〉 * −0.076 GeV4, 〈αsG2〉 * 0.063GeV4. We
use mpole

b = 4.88 GeV as a central value. With Eq. (5)
the dispersive bound gives a constraint on the coefficients

nA∑

k=0

a2
k ≤ 1 , (9)

for any choice of nA.
Eqs. (5) and (9) give only a weak constraint on the

normalization of the form factor f+. In particular, data
favors a0 ∼ 0.02, so a2

0 , 1. The main power of ana-
lyticity is that if we fix f+(q2) at nA input points then
it constrains the q2 shape between these points. With
nA = 5 the error from the bounds is negligibly small rel-
ative to other uncertainties, as we see below (our analysis
is also insensitive to the exact values of χ(0)

J or mb). The
bounds can be strengthened using heavy quark symme-
try or higher moments of Π(q2) [12], but since this uncer-
tainty is very small we do not use these improvements.

Input Points. A constraint at q2 = 0 is useful in pin-
ning down the form factor in the small q2 region. Here we
implement a constraint at q2 = 0 on |Vub|f+(0) that fol-
lows from a B → ππ factorization theorem derived with
SCET [7]. The result holds in QCD and uses isospin sym-
metry and data to eliminate effects due to the relative
magnitude and strong phase of penguin contributions.

Manipulating formulas in [7] we can write the result in
terms of observables

|Vub|f+(0) =
[

64π

m3
Bf2

π

Br(B− → π0π−)
τB− |Vud|2G2

F

]1/2

(10)

×
[
(C1 + C2)tc − C2

C2
1 − C2

2

][
1 +O

(
αs(mb),

ΛQCD

mb

)]
,

where C1 = 1.08 and C2 = −0.177 are parameters in the
electroweak Hamiltonian at µ = mb (we drop the tiny
C3,4), and tc is a hadronic parameter whose deviation
from 1 measures the size of color suppressed amplitudes.
In terms of the angles β, γ of the unitarity triangle and
CP-asymmetries Sπ+π− and Cπ+π− in B → π+π−,

tc =

√

Rc
(1+Bπ+π− cos 2β + Sπ+π− sin 2β)

2 sin2γ
, (11)

with Rc =[Br(B0 → π+π−)τB− ]/[2Br(B− → π0π−)τB0 ],
and Bπ+π− = (1− C2

π+π−−S2
π+π−)1/2. Eqs. (10,11) im-

prove on relations between B → ππ and B → π(ν̄
derived earlier, such as in Ref. [14], because they do not
rely on expanding in αs(

√
mbΛ) or require the use of

QCD sum rules for input parameters to calculate tc.
Using the latest B → ππ data [1], Eq. (10) gives

f0
in = |Vub|f+(0) = (7.2± 1.8)× 10−4 . (12)

This estimate of 25% uncertainty accounts for the 10%
experimental uncertainty, and ∼ 20% theory uncertainty
from perturbative and power corrections. The experi-
mental uncertainty includes γ = 70◦ ± 15◦ which cov-
ers the range from global fits and that preferred by the
SCET based B → ππ method from Ref. [15]. As noted
in [7] the dependence of |Vub|f+(0) on γ is mild for larger
γ’s. Estimates for perturbative and power corrections to
Eq. (10) are each at the ∼ 10% level even when “chirally
enhanced” terms are included [14, 16].

Next we consider lattice QCD input points, f k
in, which

are crucial in fixing the form factor normalization. Tech-
nically, using staggered fermions might add model depen-
dence from the (detM)1/4 trick. We take the remark-
able agreement in [17] as an indication that this model
dependence is small.Using the unquenched MILC config-
urations, Refs [2, 3] find consistent results with different
heavy quark actions. As our default we use the Fermilab
results since they have a point at larger q2:

f1
in = f+(15.87) = 0.799± 0.058± 0.088 , (13)

f2
in = f+(18.58) = 1.128± 0.086± 0.124 ,

f3
in = f+(24.09) = 3.262± 0.324± 0.359 .

The first errors in (13) are statistical, ±σi, and the second
are 11% systematic errors, ±yf i

in, with y = 0.11. For the
lattice error matrix, we use Eij = σ2

i δij + y2f i
inf

j
in, which

takes σi uncorrelated and includes 100% correlation in
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A precision method for determining |Vub| using the full range in q2 of B → π"ν data is presented.
At large q2 the form factor is taken from unquenched lattice QCD, at q2 = 0 we impose a model
independent constraint obtained from B → ππ using the soft-collinear effective theory, and the shape
is constrained using QCD dispersion relations. We find |Vub| = (3.54 ± 0.17 ± 0.44) × 10−3. With
5% experimental error and 12% theory error, this is competitive with inclusive methods. Theory
error is dominated by the input points, with negligible uncertainty from the dispersion relations.

The remarkable success of the B-factories have lead to
a new era for precision results in the CKM sector of the
standard model. For |Vub| inclusive and exclusive mea-
surements from semileptonic decays should yield a precise
value, but must surmount the now dominant theoreti-
cal uncertainties. For inclusive decays measuring |Vub| is
more difficult than |Vcb| because cuts make observables
either sensitive to a structure function which demands
input from radiative decays, or require neutrino recon-
struction. The heavy flavor averaging group (HFAG)’s
average from inclusive decays based on operator product
expansion techniques is 103|Vub| = 4.7±0.4 [1]. Exclusive
techniques for |Vcb| use heavy quark symmetry (HQS) to
normalize the form factors. For |Vub| from B → π"ν̄ sym-
metry techniques fall flat, and model independent form
factor information relies on precision lattice QCD.

Recently, the Fermilab [2] and HPQCD [3] groups have
presented unquenched lattice results for B → π form
factors. Uncertainties in the discretization restrict the
kinematics to pions that are not too energetic Eπ

<∼
1 GeV, which for the invariant mass of the lepton pair
is 15 GeV2 <∼ q2 ≤ 26.4 GeV2. Unfortunately, since the
phase space goes as |$pπ|3, there are less events and more
experimental uncertainty in this region. For B̄0 → π+"ν̄

dΓ/dq2 = N |Vub|2 |$pπ|3 |f+(q2)|2 , (1)

where N = G2
F /(24π3). For example, Belle [4] found

103 |Vub|q2≥16 =
{3.87± 0.70± 0.22+0.85

−0.51 (FNAL)

4.73± 0.85± 0.27+0.74
−0.50 (HPQCD)

(2)

where the errors are statistical, systematic, and theoret-
ical. In quadrature this is an uncertainty of ∼ 25%.

The latest Babar, CLEO, and Belle average is [5],

Br(B̄0 → π+"−ν̄) = (1.39± 0.12)× 10−4 , (3)

which should yield |Vub| at the % 5% level. So far extrac-
tions of |Vub| from the total Br rely on QCD sum rules [6]
and quark models for input. For example, HFAG reports
results on Br(B → {π, ρ, ω}"ν̄) that lead to central values

103|Vub| = 2.9 to 3.9 [1]. Due to the uncertainty they do
not currently average over exclusive extractions of |Vub|.

In this letter we present a model independent exclu-
sive method for determining the entire B → π form fac-
tor f+(q2) and thus |Vub|. A total uncertainty δ|Vub| %
13% is achieved by combining 1) the unquenched lat-
tice results [2, 3], 2) a constraint at q2 = 0 derived
from SCET [7] and B → ππ data, which determines
|Vub|f+(0), and 3) dispersion relations and analyticity
which allow us to interpolate over the entire region
of q2 by bounding the shape of f+(q2) between input
points [8, 9]. The SCET constraint induces an additional
implicit functional dependence on |Vub| in the form fac-
tors. Our first analysis uses just the total Br, yielding an
analytic formula for |Vub|. The second includes q2-spectra
with a χ2 minimization which allows the experimental
data to constrain the theoretical uncertainty. A differ-
ent approach for including the q2-spectra was developed
in [10] based on the Lellouch distribution method [11].

Analyticity Bounds. We briefly review how analytic-
ity constrains the B → π form factors, f+ and f0, re-
ferring to [8, 9, 12] for more detail. Our notation fol-
lows [12], and we set t± = (mB ± mπ)2. Suitable mo-
ments of a time ordered product of currents, Πµν(q2) =
i
∫
d4x eiqx〈0|TJµ(x)J†ν (0)|0〉 can be computed with an

OPE in QCD and are related by a dispersion relation to
a positive definite sum over exclusive states

Im Πµν=
∫
[p.s.] δ(q−pBπ)〈0|J†ν |B̄π〉〈B̄π|Jµ|0〉+ . . . (4)

Keeping this first term bounds a weighted integral over
t+ ≤ t ≤ ∞ of the squared Bπ production form factor.
Using analyticity and crossing symmetry this constrains
the shape in t = q2 of the form factors for B → π in the
physical region 0 ≤ t ≤ t−. The results are simple to
express by writing each of f+(t), f0(t) as a series

f(t) =
1

P (t)φ(t, t0)

∞∑

k=0

ak(t0) z(t, t0)k , (5)

with coefficients ak that parameterize different allowed

P (t)φ(t)f(t) =
∞∑

n=0

an zn

Blaschke Factor: remove pole at t = m2
B∗

Outer function:  phase space, Jacobian,
χ(0) in QCD

f+(t) =
1

P (t)φ(t)

∞∑

n=0

an zn

t = q2

t0 = 0.65 t−

−0.34 ≤ z ≤ 0.22

eg. then

Complex 
Magic

* *

t z

B → π"ν̄

vac→ B̄π("ν)

B∗ pole

t− t+

Form factor for

∑

n

a2
n ≤ 1series 

form

parameters

kinematic expansion 
parameter

1 ≥
∫ ∞

t+
dt

W (t)|f(t)|2

t3



More Dispersion  Relations
• Bound Form Flow(t, fi) ≤ f(t) ≤ Fhigh(t, fi)

direct, no a’s to deal with
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FIG. 10: CLB for f+(q2). Here we used JLQCD’s lattice
input, and CLEO’s experimental data.

Fig. 12, Fig. 13, and Fig. 14 show the corresponding
results.

The figures suggests that both condition A and condi-
tion B reduces the error. In fact, the corresponding |Vub|
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FIG. 11: Histograms of |Vub|. The original distribution was
assumed to be flat in the range |Vub| = [1, 6]−3 (left). After
imposing condition B, the resulting distribution distributes
with small variance.

values are

|Vub| = [2.92+0.65
−0.60] × 10−3 for case 1, (10)

|Vub| = [2.99+0.63
−0.49] × 10−3 for case 2, (11)

|Vub| = [3.61+0.55
−0.46] × 10−3 for case 3, (12)

so that the error for |Vub| is has 20%, 20% and 14% for
cases 1, 2 and 3 respectively. Thus we find both condition
A and condition B reduces the error and having both of
them together gives the significant reduction. It is also
found that the input from the soft pion theorem does not
change the result of |Vub| so much.

We also obtain product we also obtain bounds at 66%
confidence level (66% CL) for f+(0) as a byproduct

0.126 < f(0) < 0.293. (13)

which will be very useful for predicting the two body
decay rate in QCD factorization .

V. SYSTEMATIC ERRORS

In this section we discuss possible systematic errors in
our analysis.

M. Fukunaga, T. Onogi

first combined analysis of lattice
and experimental data (CLEO)

to go beyond |Vub| to get shape parameters, requires tighter constraints
T. Becher, R. Hill

• Series Form f+(t) =
1

P (t)φ(t)

∞∑

n=0

an zn

χ2
fit to include lattice and expt. points
C. Arnesen, B. Grinstein, I. Rothstein, I.S.

χ2 =
∑

i,j

Eexpt
ij [Brexp

i − Bri(Vub, an, bn)][Brexp
j − Brj(Vub, an, bn)]

+
∑

ij

Elat
ij [f i

in − f i(an, bn)][f j
in − f j(an, bn)] + . . .

∞∑

n=0

a2
n ≤ A ∼

( Λ
mb

)3



• Multiply-Subtracted Omnes Dispersion Relation
J. Flynn, J. Nieves

f+(t) =
1

t+ − t

n∏

i=0

[
fi (t+ − ti)

]Qn
j=0,j !=i

(
t−tj
ti−tj

)

n! 1

q2 [GeV2]
f+
(q
2
)

302520151050

3.5

3

2.5

2

1.5

1
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0

Figure 2 Form factor f +(q2) with 68% CL bands (curves) together with LCSR and lattice QCD inputs (open

circles). Filled (CLEO/BELLE) and open (BaBar) squares show estimates for the form factors deduced from

the experimental partial branching fractions assuming a constant f + over each bin and using our central fitted

value of |Vub|.

in reference [5]2. This is shown in figure 4. When Pφ f + is Taylor-expanded in powers of z, the

constraint is that the sum of squares of the expansion coefficients is bounded above by 1. We find

that a cubic polynomial is an excellent fit (see figure 4) and the coefficients are,

a0 = 0.026 ± 0.002, a1 = −0.031 ± 0.023, a2 = −0.091 ± 0.041, a3 = 0.19 ± 0.40. (12)

with
∑

a2
i
= 0.05+0.37

−0.03 < 1. The errors for the ai coefficients arise from the variation of our form

factor Monte-Carlo propagated to Pφ f + (see the bands in figure 4).

Applying soft collinear effective theory (SCET) to B → ππ decays allows a factorisation result to

be derived which leads to a model-independent extraction of the form factor (multiplied by |Vub|)

at q2 = 0 [37]. We quote the result from our fit:

|Vub| f
+(0) = (9.2 ± 1.1) × 10−4 (13)

to be compared to |Vub| f
+(0) = (7.2 ± 1.8) × 10−4 in [37].

To conclude, we have presented a theoretically-based procedure to analyse exclusive B → π

semileptonic decays. Starting from very general principles we propose a simple parameteriza-

tion for the form factor f +, equation (6), requiring as input only knowledge of the form factor at a

set of points. We have used this to combine theoretical and experimental inputs, allowing a robust

2See equations (3), (6) and the intervening text in [5]. We use mb = 4.88GeV and mB∗ = 5.235GeV.

6

χ2
fit to include lattice,

expt. points

completely compatible with 
series results for same inputs



Unquenched Lattice QCD

Comparison of lattice calculations

f+

f0

Preliminary: HPQCD (hep-lat/0408019) and Fermilab/MILC (hep-lat/0409116)
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Chiral Perturbation Theory
3

the systematic error. Of the eleven reported lattice points
we use only three at separated q2. This maximizes the
shape information while minimizing additional correla-
tions that may occur in neighboring points, for example
from the chiral extrapolation.

Chiral perturbation theory (ChPT) gives model inde-
pendent input for f+ (and f0) when Eπ ∼ mπ, namely

f+

(
q2(Eπ)

)
=

gfBmB

2fπ(Eπ+mB∗−mB)

[
1+O

(Eπ

∆

)]
, (14)

where g is the B∗Bπ coupling and fB the decay con-
stant. Possible pole contributions from the low lying
Jπ = 0+, 1+, 2+ states vanish by parity and angular
momentum conservation. The first corrections scale as
Eπ/∆, where ∆ ∼ 600 MeV is the mass splitting to the
first radially excited 1− state above the B∗. We take g =
0.5. This is compatible with D∗ decays using heavy quark
symmetry. Updating the ChPT fit in [18] by including
both Γ(D∗+) and D∗ Br-ratios, gives gD∗Dπ # 0.51 (at
an order where there are no counterterm operators and
no 1/mc corrections absorbed in g). For the lattice aver-
age Hashimoto [19] gives fB = 189 MeV. Thus,

f4
in = f+(26.42) = 10.38± 3.63 , (15)

where this fairly conservative 35% error is from uncer-
tainty in gfB, and from the mπ/∆ ∼ 23% corrections.

Determining f+. To determine f+(t) we drop ak≥6 in
Eq.(5), and take a5 → a5(1 − z2)−1/2 which properly
bounds the truncation error [20]. The f 0−4 input points
then fix a0−4 as functions of a5. Functions that bound
f+(t) are determined from the maximum and minimum
values of a5 satisfying (9) with nA = 5. Thus we solve

18.3a0+3.96a1+0.857a2+0.185a3+0.0401a4 (16)
+0.00887a5 = f0/|Vub| ,

37.8a0+0.960a1+0.0244a2+0.000619a3+1.57×10−5a4

+4.00×10−7a5 = f1 , . . . ,

304.0a0−103.6a1+35.3a2−12.0a3+4.10a4−1.49a5=f4,

a2
0 + a2

1 + a2
2 + a2

3 + a2
4 + a2

5 = 1 .

In Eq.(5) this yields two solutions, F±, with parameters

f+(t) = F±(t, {f0/|Vub|, f1, f2, f3, f4}) . (17)

To see how well these solutions bound the form factor
we fix |Vub| = 3.6 × 10−3, f i = f i

in and plot the bounds
as the two black solid lines in Fig. 1. The curves lie on
top of each other. For comparison we show dashed lines
for the bounds on f+ and f0 obtained using four lattice
points (shown as dots). With these inputs the constraint
f+(0) = f0(0) is less effective than using the SCET point.
|Vub| from total Br-fraction. Equating Eq.(3) with the

theoretical rate obtained using Eqs.(17) gives an analytic
equation for |Vub|. With f i = f i

in the solution is

|Vub| = (4.13± 0.21± 0.58)× 10−3 . (18)

0.8

0.6

0.4

0.2

0.0
2520151050

q2

1- q2( ) f (q2)

f = f0

f = f+

FIG. 1: Upper and lower bounds on the form factors from
dispersion relations, where q̂2 = q2/m2

B∗ and the (1−q̂2) factor
removes the B∗ pole. The overlapping solid black lines are
bounds F± derived with the SCET point, 3 lattice points,
and the ChPT point (diamonds with error bars). The dashed
lines are the bounds derived using instead four lattice points
(shown by the dots). Input point errors are not included in
these lines, and are analyzed in the text.

Type of Error Variation From δ|Vub|Br δ|Vub|q
2

Input Points 1-σ correlated errors ±14% ±12%

Bounds F+ versus F− ±0.6% ±0.04%

mpole
b 4.88 ± 0.40 ±0.1% ±0.2%

OPE order 2 loop→ 1 loop −0.2% +0.3%

TABLE I: Summary of theoretical uncertainties on |Vub|. Re-
sults are shown for an analysis from the total branching frac-

tion, δ|Vub|Br, and from using the dΓ/dq2 spectrum, δ|Vub|q
2
.

For the input point error we quote the average from F±.

The first error is experimental, 5.2%, propagated from
Eq.(3). The second error, 14%, is from theory and is
broken down in Table I. It is dominated by the input
points. The bound uncertainty from the choice of so-
lution is < 1% (but would grow to ±12% without the
SCET point). The error from mb and the order in the
OPE and are very small because shifts in the normaliza-
tion through χ(0)

f+
are compensated by shifts in the an co-

efficients, except for the last term a5 which gives a small
contribution. To ensure consistency with the dispersion
bounds the input point uncertainty is calculated using
the Lellouch-method of generating random points from
Gaussians [11], giving 103|Vub| = (3.96 ± 0.20 ± 0.56).
Our distributions were determined using Eqs. (12,13,15)
and the correlation matrix Eij . Taken individually the
SCET and ChPT points give ∼ 5% error, so the lattice
uncertainty dominates.
|Vub| from q2 spectra. Results for partial branching

fractions, (Brexp
i ± δBri), over different bins in q2 are

also available. Cleo [21] and Belle [4] present results
for 3 bins with untagged and π+ semileptonic tags re-
spectively. Babar [5] recently presented total rates from
hadronic & leptonic π+ and π0 tags as well as π+ semilep-
tonic tagged data in 3-bins and untagged data over 5-
bins. By fitting to these 17 pieces of data with Minuit

∆ ∼ 600 MeV

B*  pole B*B

important for lattice chiral extrapolation •

•

gfB =?

in mπ



Shape Parameters,  SCET,  etc.

•

• |Vub|f+(0)

1
β

=
(m2

B −m2
π)

f+(0)
df0(q2)

dq2

∣∣∣∣
q2=0

•

•

gfB

δ = 1− (m2
B −m2

π)
f+(0)

(
df+

dq2

∣∣∣∣
q2=0

− df0

dq2

∣∣∣∣
q2=0

) R.Hill

}



pseudoscalar: f+, f0, fT

vector: V , A0, A1, A2, T1, T2, T3

B →
B →

} “hard spectator”,
“factorizable”
“soft form factor”,
“non-factorizable”

Form Factors

Nonleptonic

Factorization at

A(B →M1M2) = Acc̄+N

{
fM2ζ

BM1

∫
duT2ζ(u)φM2(u)+fM2

∫
dudzT2J(u, z)ζBM1

J (z)φM2(u)+(1↔ 2)
}

B →M1M2

mb

}
f(E) =

∫
dz T (z,E) ζBM

J (z,E)

+ C(E) ζBM (E)

universality at 
EΛ

BBNS;  Chay and Kim; 
Bauer, Pirjol, Rothstein, I.S. 

 Factorization in SCET

B M

!~p 22
!~p 22

!~p2 Q

~p2 Q2

!~p 22M'

8

FIG. 5: Model independent results for ζBπ , ζBπ
J , and the

B → π form factor f+(q2 = 0) as a function of γ. The shaded
bands show the 1-σ errors propagated from the B → ππ data.

non-perturbative parameters ζBπ , ζBπ
J ,

T = Nπ
1
3
(C1 + C2)

[
4ζBπ + (4 + 〈ū−1〉π)ζBπ

J

]
,

Tc = Nπ

[(
C1 +

C2

3
+ C4 +

C3

3

)
ζBπ (37)

+
(

C1 + C4 + (1 + 〈ū−1〉π)
C2 + C3

3

)
ζBπ
J

]
,

where 〈ū−1〉π =
∫ 1
0 φπ(u)/(1−u), and ζBπ

J =
∫

dz ζBπ
J (z).

The penguin amplitude also gets a contribution from the
complex Aππ

cc̄ amplitude, so

P ≡ −
∣∣∣
λ(d)

u

λ(d)
c

∣∣∣ Tc rc eiδc = Nπ

[(
C4 +

C3

3

)
ζBπ

+
(

C4+(1+〈ū−1〉π)
C3

3

)
ζBπ
J +

1
Nπ

Aππ
cc̄

]
. (38)

The amplitude Tn is given by the isospin relation Eq. (33)
as Tn = T−Tc. At tree level in SCET Wilson coefficients
the B → π form factor at q2 = 0 is

f+(0) = ζBπ + ζBπ
J . (39)

Neglecting the O(αs(mb)) corrections introduces an error
of about 10% for the T amplitudes, which is smaller than
the expected size of the power corrections ∼ O(Λ/E).

Eq. (37) implies that the tree amplitudes T, Tc are cal-
culable in terms of the ζ, ζJ parameters, and their rela-
tive strong phase are small θ, θn ∼ O(αs(mb), Λ/E). On
the other hand, the penguin amplitude P can have an
O(1) strong phase due to the charming penguin ampli-
tude Aππ

cc̄ . The pattern of results in Fig. 4 supports these
predictions for the tree amplitudes T, Tc for the upper
hand solution. In particular, within the experimental
uncertainty the phases θ and θn are still consistent with
being small and compatible with order O(Λ/E) effects.

Using the numbers in Eq. (35) for |T | and |t| and the
SCET results in Eqs. (37) we can extract the nonper-
turbative parameters ζ, ζJ . Taking LL order for the co-
efficients (C1 = 1.107, C2 = −0.248, C3 = 0.011, C4 =
−0.025 at µ = 4.8GeV) and 〈ū−1〉π = 3 [28], we find

ζBπ
∣∣
γ=64◦

=
(
0.05± 0.05

)(3.9× 10−3

|Vub|

)
, (40)

ζBπ
J

∣∣
γ=64◦

=
(
0.11± 0.03

)(3.9× 10−3

|Vub|

)
,

where the quoted errors are propagated from the exper-
imental errors from |T | and |t| in Eq. (35). Using the
results for rc and δc in Eq. (34) and |Vcb| = 0.041 the
penguin amplitude is

P

Nπ

∣∣∣
γ=64◦

= (0.043± 0.013) ei(136◦±12◦) . (41)

The ζππ and ζππ
J terms in Eq. (38) contribute 0.002 to

P/Nπ, which is only a small part of the experimental re-
sult. The perturbative corrections from the ∆c(f)

i ’s or
particularly the ∆b(f)

i ’s can add terms whose rough size
is estimated to be ∼ ζBπ

J C1 αs(mb)/π ( 0.007. After re-
moving these contributions, the sizeable remainder would
be attributed to Aππ

cc̄ . Since Aππ
cc̄ can have a large non-

perturbative strong phase, the large phase in Eq. (41)
supports the conclusion that this term contributes a sub-
stantial amount to P/Nπ.

The extraction of the above parameters allows us to
make two model independent predictions with only γ and
|Vub| as input. First a prediction for the semileptonic
B → π form factor f+(0) is possible. Combining Eq. (40)
with Eq. (39) we find

f+(0)
∣∣
γ=64◦

=
(
0.17± 0.02

)(3.9× 10−3

|Vub|

)
. (42)

In Fig. 5 we show results for ζBπ , ζBπ
J , and f+(0) for

other values of γ, thus generalizing the results in Eqs. (40)
and (42). Note that including the correlation in the er-
rors for ζBπ and ζBπ

J has led to a smaller uncertainty for
f+(0). Theory uncertainty is not shown in Eq. (42) or
Fig. 5, and the most important source are power correc-
tions which we estimate to be ±0.03 on f+(0). One loop
αs(mb) corrections are also not yet included. Varying
µ = 2.4–9.6 GeV in the LL coefficients changes f+(0) by
only a small amount ∓0.01.

It is interesting to note that the central values from
our fit to the data give ζBπ

J
>∼ ζBπ which differs from the

hierarchy used in QCDF. Furthermore our central value
for f+(0) is substantially smaller than the central values
obtained from both QCD sum rules [29] (f+(0) = 0.26),
from form factor model based fits to the semileptonic
data [30] (f+(0) = 0.21), or those used in the QCDF
analysis [4] (f+(0) = 0.28 or 0.25).



From nonleptonic data: B → ππ

80

3.9 Light Cone Sum 
rules give 

see Arnesen et al.

• Uses data to remove complex penguin amplitude, and color 
suppressed amplitude.  ie. to eliminate LO hadronic parameters

flat with γ

|Vub|f+(0) =
[

64π

mB3f2
π

Br(B− → π0π−)
τB−

|Vud|2G2
F

]1/2[ (C1 + C2)tc − C2

C2
1 − C2

2

][
1 + O

(
αs(mb),

ΛQCD

E

)]

|Vub|f+(0)

tc =
|Tππ|

|Tππ + Cππ| =

√
Br(B0 → pi+π−)τB−

Br(B− → π0π−)τB0

(1 + (1− C2
π+π− − S2

π+π−)1/2 cos(2β) + Sπ+π− sin(2β)
4 sin2 γ

f+(0)
talk by P. Ball

= 0.258± 0.031

|Vub|f+(0) = (7.6 ± 1.9)× 10−4 (agrees at 1-sigma with fits)

(also agrees)



•

• |Vub|f+(0)

1
β

=
(m2

B −m2
π)

f+(0)
df0(q2)

dq2

∣∣∣∣
q2=0

•

•

gfB

δ = 1− (m2
B −m2

π)
f+(0)

(
df+

dq2

∣∣∣∣
q2=0

− df0

dq2

∣∣∣∣
q2=0

)

size of “hard scattering”
relative to “soft f.f.”

δ =
2ζBπ

J

ζBπ + ζBπ
J

∣∣∣∣
E=

mB
2

− 1
β
− 1 =

d ln(ζBπ + ζBπ
J )

d lnE

∣∣∣∣
E=

mB
2" −2

if ζBπ + ζBπ
J ∼ 1

E2

E scaling of SCET f.f.

Shape Parameters,  SCET,  etc.



Inputs to code
i) Expt. data with correlation matrix when available

ii)   Lattice FNAL /MILC
take systematic error to be 100% correlated

2

functional forms. The variable

z(t, t0) =
√

t+ − t−
√

t+ − t0√
t+ − t +

√
t+ − t0

, (6)

maps t+ < t <∞ onto |z| = 1 and −∞ < t < t+ onto z ∈
[−1, 1]. t0 is a free parameter that can be chosen to attain
the tightest possible bounds, and it defines z(t0, t0) = 0.
We take t0 = 0.65 t− giving −0.34 ≤ z ≤ 0.22 for the
B → π range. In Eq. (5) the “Blaschke” factor P (t)
eliminates sub-threshold poles, so P (t) = 1 for f0, while
P (t) = z(t; m2

B∗) for f+ due to the B∗ pole. Finally, the
“outer” function is given by

φ(t, t0)=
√

nI

Kχ(0)
J

(√
t+−t+

√
t+−t0

) (t+−t)(a+1)/4

(t+−t0)1/4

×
(√

t+−t+
√

t+
)−(b+3)(√

t+−t+
√

t+−t−
)a/2

, (7)

where nI = 3/2 and for f+: (K = 48π, a = 3, b = 2),
while for f0: (K = 16π/(t+t−), a = 1, b = 1). Here χ(0)

J
corresponds to the lowest moment of Π(q2) computed
with an OPE. At two loops in terms of the pole mass
and condensates and taking µ = mb [11, 13]

χ(0)
f+

=
3
[
1+1.140 αs(mb)

]

32π2m2
b

−mb 〈ūu〉
m6

b

− 〈αsG2〉
12πm6

b

,

χ(0)
f0

=
[
1+0.751 αs(mb)

]

8π2
+

mb 〈ūu〉
m4

b

+
〈αsG2〉
12πm4

b

, (8)

with mb〈ūu〉 * −0.076 GeV4, 〈αsG2〉 * 0.063GeV4. We
use mpole

b = 4.88 GeV as a central value. With Eq. (5)
the dispersive bound gives a constraint on the coefficients

nA∑

k=0

a2
k ≤ 1 , (9)

for any choice of nA.
Eqs. (5) and (9) give only a weak constraint on the

normalization of the form factor f+. In particular, data
favors a0 ∼ 0.02, so a2

0 , 1. The main power of ana-
lyticity is that if we fix f+(q2) at nA input points then
it constrains the q2 shape between these points. With
nA = 5 the error from the bounds is negligibly small rel-
ative to other uncertainties, as we see below (our analysis
is also insensitive to the exact values of χ(0)

J or mb). The
bounds can be strengthened using heavy quark symme-
try or higher moments of Π(q2) [12], but since this uncer-
tainty is very small we do not use these improvements.

Input Points. A constraint at q2 = 0 is useful in pin-
ning down the form factor in the small q2 region. Here we
implement a constraint at q2 = 0 on |Vub|f+(0) that fol-
lows from a B → ππ factorization theorem derived with
SCET [7]. The result holds in QCD and uses isospin sym-
metry and data to eliminate effects due to the relative
magnitude and strong phase of penguin contributions.

Manipulating formulas in [7] we can write the result in
terms of observables

|Vub|f+(0) =
[

64π

m3
Bf2

π

Br(B− → π0π−)
τB− |Vud|2G2

F

]1/2

(10)

×
[
(C1 + C2)tc − C2

C2
1 − C2

2

][
1 +O

(
αs(mb),

ΛQCD

mb

)]
,

where C1 = 1.08 and C2 = −0.177 are parameters in the
electroweak Hamiltonian at µ = mb (we drop the tiny
C3,4), and tc is a hadronic parameter whose deviation
from 1 measures the size of color suppressed amplitudes.
In terms of the angles β, γ of the unitarity triangle and
CP-asymmetries Sπ+π− and Cπ+π− in B → π+π−,

tc =

√

Rc
(1+Bπ+π− cos 2β + Sπ+π− sin 2β)

2 sin2γ
, (11)

with Rc =[Br(B0 → π+π−)τB− ]/[2Br(B− → π0π−)τB0 ],
and Bπ+π− = (1− C2

π+π−−S2
π+π−)1/2. Eqs. (10,11) im-

prove on relations between B → ππ and B → π(ν̄
derived earlier, such as in Ref. [14], because they do not
rely on expanding in αs(

√
mbΛ) or require the use of

QCD sum rules for input parameters to calculate tc.
Using the latest B → ππ data [1], Eq. (10) gives

f0
in = |Vub|f+(0) = (7.2± 1.8)× 10−4 . (12)

This estimate of 25% uncertainty accounts for the 10%
experimental uncertainty, and ∼ 20% theory uncertainty
from perturbative and power corrections. The experi-
mental uncertainty includes γ = 70◦ ± 15◦ which cov-
ers the range from global fits and that preferred by the
SCET based B → ππ method from Ref. [15]. As noted
in [7] the dependence of |Vub|f+(0) on γ is mild for larger
γ’s. Estimates for perturbative and power corrections to
Eq. (10) are each at the ∼ 10% level even when “chirally
enhanced” terms are included [14, 16].

Next we consider lattice QCD input points, f k
in, which

are crucial in fixing the form factor normalization. Tech-
nically, using staggered fermions might add model depen-
dence from the (detM)1/4 trick. We take the remark-
able agreement in [17] as an indication that this model
dependence is small.Using the unquenched MILC config-
urations, Refs [2, 3] find consistent results with different
heavy quark actions. As our default we use the Fermilab
results since they have a point at larger q2:

f1
in = f+(15.87) = 0.799± 0.058± 0.088 , (13)

f2
in = f+(18.58) = 1.128± 0.086± 0.124 ,

f3
in = f+(24.09) = 3.262± 0.324± 0.359 .

The first errors in (13) are statistical, ±σi, and the second
are 11% systematic errors, ±yf i

in, with y = 0.11. For the
lattice error matrix, we use Eij = σ2

i δij + y2f i
inf

j
in, which

takes σi uncorrelated and includes 100% correlation in

3

the systematic error. Of the eleven reported lattice points
we use only three at separated q2. This maximizes the
shape information while minimizing additional correla-
tions that may occur in neighboring points, for example
from the chiral extrapolation.

Chiral perturbation theory (ChPT) gives model inde-
pendent input for f+ (and f0) when Eπ ∼ mπ, namely

f+

(
q2(Eπ)

)
=

gfBmB

2fπ(Eπ+mB∗−mB)

[
1+O

(Eπ

∆

)]
, (14)

where g is the B∗Bπ coupling and fB the decay con-
stant. Possible pole contributions from the low lying
Jπ = 0+, 1+, 2+ states vanish by parity and angular
momentum conservation. The first corrections scale as
Eπ/∆, where ∆ ∼ 600 MeV is the mass splitting to the
first radially excited 1− state above the B∗. We take g =
0.5. This is compatible with D∗ decays using heavy quark
symmetry. Updating the ChPT fit in [18] by including
both Γ(D∗+) and D∗ Br-ratios, gives gD∗Dπ # 0.51 (at
an order where there are no counterterm operators and
no 1/mc corrections absorbed in g). For the lattice aver-
age Hashimoto [19] gives fB = 189 MeV. Thus,

f4
in = f+(26.42) = 10.38± 3.63 , (15)

where this fairly conservative 35% error is from uncer-
tainty in gfB, and from the mπ/∆ ∼ 23% corrections.

Determining f+. To determine f+(t) we drop ak≥6 in
Eq.(5), and take a5 → a5(1 − z2)−1/2 which properly
bounds the truncation error [20]. The f 0−4 input points
then fix a0−4 as functions of a5. Functions that bound
f+(t) are determined from the maximum and minimum
values of a5 satisfying (9) with nA = 5. Thus we solve

18.3a0+3.96a1+0.857a2+0.185a3+0.0401a4 (16)
+0.00887a5 = f0/|Vub| ,

37.8a0+0.960a1+0.0244a2+0.000619a3+1.57×10−5a4

+4.00×10−7a5 = f1 , . . . ,

304.0a0−103.6a1+35.3a2−12.0a3+4.10a4−1.49a5=f4,

a2
0 + a2

1 + a2
2 + a2

3 + a2
4 + a2

5 = 1 .

In Eq.(5) this yields two solutions, F±, with parameters

f+(t) = F±(t, {f0/|Vub|, f1, f2, f3, f4}) . (17)

To see how well these solutions bound the form factor
we fix |Vub| = 3.6 × 10−3, f i = f i

in and plot the bounds
as the two black solid lines in Fig. 1. The curves lie on
top of each other. For comparison we show dashed lines
for the bounds on f+ and f0 obtained using four lattice
points (shown as dots). With these inputs the constraint
f+(0) = f0(0) is less effective than using the SCET point.
|Vub| from total Br-fraction. Equating Eq.(3) with the

theoretical rate obtained using Eqs.(17) gives an analytic
equation for |Vub|. With f i = f i

in the solution is

|Vub| = (4.13± 0.21± 0.58)× 10−3 . (18)
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FIG. 1: Upper and lower bounds on the form factors from
dispersion relations, where q̂2 = q2/m2

B∗ and the (1−q̂2) factor
removes the B∗ pole. The overlapping solid black lines are
bounds F± derived with the SCET point, 3 lattice points,
and the ChPT point (diamonds with error bars). The dashed
lines are the bounds derived using instead four lattice points
(shown by the dots). Input point errors are not included in
these lines, and are analyzed in the text.

Type of Error Variation From δ|Vub|Br δ|Vub|q
2

Input Points 1-σ correlated errors ±14% ±12%

Bounds F+ versus F− ±0.6% ±0.04%

mpole
b 4.88 ± 0.40 ±0.1% ±0.2%

OPE order 2 loop→ 1 loop −0.2% +0.3%

TABLE I: Summary of theoretical uncertainties on |Vub|. Re-
sults are shown for an analysis from the total branching frac-

tion, δ|Vub|Br, and from using the dΓ/dq2 spectrum, δ|Vub|q
2
.

For the input point error we quote the average from F±.

The first error is experimental, 5.2%, propagated from
Eq.(3). The second error, 14%, is from theory and is
broken down in Table I. It is dominated by the input
points. The bound uncertainty from the choice of so-
lution is < 1% (but would grow to ±12% without the
SCET point). The error from mb and the order in the
OPE and are very small because shifts in the normaliza-
tion through χ(0)

f+
are compensated by shifts in the an co-

efficients, except for the last term a5 which gives a small
contribution. To ensure consistency with the dispersion
bounds the input point uncertainty is calculated using
the Lellouch-method of generating random points from
Gaussians [11], giving 103|Vub| = (3.96 ± 0.20 ± 0.56).
Our distributions were determined using Eqs. (12,13,15)
and the correlation matrix Eij . Taken individually the
SCET and ChPT points give ∼ 5% error, so the lattice
uncertainty dominates.
|Vub| from q2 spectra. Results for partial branching

fractions, (Brexp
i ± δBri), over different bins in q2 are

also available. Cleo [21] and Belle [4] present results
for 3 bins with untagged and π+ semileptonic tags re-
spectively. Babar [5] recently presented total rates from
hadronic & leptonic π+ and π0 tags as well as π+ semilep-
tonic tagged data in 3-bins and untagged data over 5-
bins. By fitting to these 17 pieces of data with Minuit

q̂2 = q2/m2
B∗

∑

n

a2
n ≤ 1

and/or  HPQCD

(this increases uncertainty)

iii)   f+(0) = f0(0)

turn on/off datasets
play with:
- number of f+ and f0 points;
- error correlation analysis
   ala Bob Kowalewski

iv)   number of  a(f+)
n and a(f0)

n

turn on/off

dispersion parameters vary the choice

v)   bounds or
∑

n

a2
n ≤ A , treatment of truncation error

simult. dispersion fit to both



 The Default Vub Fit

3 lattice points for each form factor  (100% syst. correlation)•
Do  FNAL and HPQCD separately•
All experimental data sets included•

•
•
•

NO  scet or chpt points
∑

n

a2
n ≤ 1,

f+(0) = f0(0)
3 an’s for f+ and 2 bn’s for f0

V HPQCD
ub = (4.21± 0.45)× 10−3

V FNAL
ub = (3.82± 0.44)× 10−3

errors dominated 
by lattice

experimental 
errors ~ 3%



Vub 

depends on:  FNAL vs. HPQCD,  lattice norm (obviously)

•
insensitive to:  dispersion bound                     , chpt/scet input •
also insensitive to:  lattice corr. matrix ala Bob K.

•
• mild:  number of lattice points and which ones, num(a’s)

∑

n

a2
n ≤ A

f+(0)

Other Shape parameters

effects from:  FNAL vs. HPQCD, num(a’s)•

∼ 0.01
∼ 0.1

∼ 0.3

fHPQCD
+ (0) = 0.20± 0.02 fHPQCD

+ (0) = 0.22± 0.03

from Becher & Hill

V HPQCD
ub = (4.21± 0.45)× 10−3

V FNAL
ub = (3.82± 0.44)× 10−3
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The End


