Dispersion Analyses for Vub and form factor shape parameters

Iain Stewart MIT

CKM, Dec. 2006

Dispersion Relations

M.N Meiman, '63 S. Okubo, I. Fushih, '71 V. Singh, A. K. Raina, '79 C. Bourrely, B. Machet, E de Rafael, '81 E. de Rafael, J. Taron, '92 & '94 B.Grinstein, P. Mende, '93 C.G.Boyd, B.Grinstein, R. Lebed, '95,'96,'97 L. Lellouch, '96 C.G.Boyd, M. Savage, '97 I. Caprini, L.Lellouch, M. Neubert '97 M. Fukunaga, T. Onogi, '05 C.Arnesen, B. Grinstein, I. Rothstein, I.S., '05 T. Becher, R. Hill, '06 J. Flynn, J. Nieves, '06

'ub

 $B \to \pi \ell \bar{\nu}$

$$\frac{d\Gamma(\bar{B}^0 \to \pi^+ \ell \bar{\nu})}{dq^2} = \frac{G_F^2 |\vec{p}_\pi|^3}{24\pi^3} \left| V_{ub} \right|^2 \left| f_+(q^2) \right|^2$$

BABAR SL tag: $B^+ \to \pi^0 l^+ v \times 2\tau_0/\tau_+$ 1.35 ± 0.33 ± 0.19 BABAR Breco tag: $B^+ \to \pi^0 l^+ v \times 2\tau_0/\tau_+$ 1.52 ± 0.41 ± 0.20 BELLE SL tag: $B^+ \to \pi^0 l^+ v \times 2\tau_0/\tau_+$ 1.43 ± 0.26 ± 0.16 BELLE Breco tag: $B^+ \to \pi^0 l^+ v \times 2\tau_0/\tau_+$ 1.60 ± 0.32 ± 0.11	
BABAR SL tag: B ⁰ $\rightarrow \pi^- l^+ \nu$ 1.12 $\pm 0.25 \pm 0.10$ BELLE SL tag: B ⁰ $\rightarrow \pi^- l^+ \nu$ 1.38 $\pm 0.19 \pm 0.14$ BABAR Breco tag: B ⁰ $\rightarrow \pi^- l^+ \nu$ 1.07 $\pm 0.27 \pm 0.19$ CLEO untagged: B $\rightarrow \pi l^+ \nu$ 1.32 $\pm 0.18 \pm 0.13$ BABAR untagged: B $\rightarrow \pi l^+ \nu$ 1.44 $\pm 0.08 \pm 0.10$ BELLE Breco tag: B ⁰ $\rightarrow \pi^- l^+ \nu$ 1.49 $\pm 0.26 \pm 0.06$ Average: B ⁰ $\rightarrow \pi^- l^+ \nu$ 1.37 $\pm 0.06 \pm 0.06$	Br to 6%
$\chi^{2/dof} = 2.9/9 (CL = 97.0)$ -2 0 $B(B^{0} \rightarrow 3)$	$\frac{HFAG}{1^{1}CHEP06}$ 2 $\pi^{-} 1^{+} \nu$) [× 10 ⁻⁴]

 $|V_{ub}|$ to 3% !?!

Uncertainty from theory dominates.

Sources of Information

Experimental q^2 spectra (bins) Dispersion Relations Unquenched Lattice QCD Chiral Perturbation Theory SCET, $f_+(0)$

Dispersion Relations

Define

$$\Pi_{J}^{\mu\nu}(q) = \frac{1}{q^{2}} (q^{\mu}q^{\nu} - q^{2}g^{\mu\nu}) \Pi_{J}^{T}(q^{2}) + \frac{q^{\mu}q^{\nu}}{q^{2}} \Pi_{J}^{L}(q^{2}) \equiv i \int d^{4}x \, e^{iqx} \langle 0|\mathbf{T}J^{\mu}(x)J^{\dagger\nu}(0)|0\rangle$$

Dispersion relations

$$\begin{split} \chi^{(0)} &= \frac{1}{2} \frac{\partial^2 \Pi_J^T}{\partial (q^2)^2} \Big|_{q^2 = 0} = \frac{1}{\pi} \int_0^\infty dt \frac{\operatorname{Im} \Pi_J^T(t)}{t^3} \\ & \text{Inequality} \\ \operatorname{Im} \Pi_J^{T,L} &= \frac{1}{2} \sum_X (2\pi)^4 \delta^4 (q - p_X) |\langle 0|J|X \rangle|^2 \geq \int [p.s.] \pi (2\pi)^3 \delta^4 (q - p_X) |\langle 0|J|B\pi \rangle|^2 \\ & \text{Perturbative QCD} \\ & \text{Related by crossing to decay form factor} \\ & \text{(OPE)} \end{split}$$

Bound on Form factor

$$1 \ge \int_{t^+}^{\infty} dt \; \frac{W(t)|f(t)|^2}{t^3}$$

 $B\pi$ production threshold

$$t_+ = (m_B + m_\pi)^2$$

$$\begin{array}{|c|c|c|c|c|} \hline \textbf{Complex}\\ \hline \textbf{Magic} & 1 \geq \int_{t^+}^{\infty} dt \, \frac{W(t)|f(t)|^2}{t^3} & z(t,t_0) = \frac{\sqrt{t_+ - t} - \sqrt{t_+ - t_0}}{\sqrt{t_+ - t} + \sqrt{t_+ - t_0}} & t_{\pm} = (m_B \pm m_{\pi})^2 \\ \hline & & & \\ \hline &$$

More Dispersion Relations

• Bound Form $F_{\text{low}}(t, f_i) \le f(t) \le F_{\text{high}}(t, f_i)$

direct, no a's to deal with

first combined analysis of lattice and experimental data (CLEO)

Series Form
$$f_+(t) = \frac{1}{P(t)\phi(t)} \sum_{n=0}^{\infty} a_n z^n$$

 χ^2 fit to include lattice and expt. points C.Arnesen, B. Grinstein, I. Rothstein, I.S.

$$\chi^{2} = \sum_{i,j} E_{ij}^{expt} [\operatorname{Br}_{i}^{exp} - \operatorname{Br}_{i}(V_{ub}, a_{n}, b_{n})] [\operatorname{Br}_{j}^{exp} - \operatorname{Br}_{j}(V_{ub}, a_{n}, b_{n})] + \sum_{ij} E_{ij}^{\operatorname{lat}} [f_{in}^{i} - f^{i}(a_{n}, b_{n})] [f_{in}^{j} - f^{j}(a_{n}, b_{n})] + \dots$$

to go beyond $|V_{ub}|$ to get shape parameters, requires tighter constraints T. Becher, R. Hill $\sum_{n=1}^{\infty} 2^n = (\Lambda)^3$

$$\sum_{n=0}^{\infty} a_n^2 \le A \sim \left(\frac{\Lambda}{m_b}\right)^3$$

M. Fukunaga, T. Onogi

Multiply-Subtracted Omnes Dispersion Relation

$$f_{+}(t) = \frac{1}{t_{+} - t} \prod_{i=0}^{n} \left[f_{i} \left(t_{+} - t_{i} \right) \right]^{\prod_{j=0, j \neq i}^{n} \left(\frac{t - t_{j}}{t_{i} - t_{j}} \right)} \qquad \qquad \text{J. Flynn, J. Nieves}$$

$$n \gg 1$$

 χ^2 fit to include lattice, expt. points

completely compatible with series results for same inputs

. .

 a list of systematic uncertainties for ALL known sources is crucial.

Errors	HPQCD errors
perturbative matching	9%
chiral extrap. & statistics	8%
action discretization	3%
relativistic	1%
Systematics	Fermilab/ MILC errors
Systematics matching	Fermilab/ MILC errors 1%
Systematics matching chiral extrapolation	Fermilab/ MILC errors 1% 4%
Systematicsmatchingchiralextrapolation q^2 interp.	Fermilab/ MILC errors 1% 4% 4%
Systematicsmatchingchiralchiralextrapolation q^2 interp.finite a	Fermilab/ MILC errors 1% 4% 4% 9%

Chiral Perturbation Theory

$$f_+(q^2(E_\pi)) = \frac{gf_B m_B}{2f_\pi(E_\pi + m_{B^*} - m_B)} \left[1 + \mathcal{O}\left(\frac{E_\pi}{\Delta}\right)\right] \qquad \Delta \sim 600 \,\mathrm{MeV}$$

$$gf_B = ?$$

• important for lattice chiral extrapolation in m_{π}

Shape Parameters, SCET, etc.

- gf_B
- $|V_{ub}|f_+(0)$

•
$$\frac{1}{\beta} = \frac{(m_B^2 - m_\pi^2)}{f_+(0)} \frac{df_0(q^2)}{dq^2}\Big|_{q^2 = 0}$$

•
$$\delta = 1 - \frac{(m_B^2 - m_\pi^2)}{f_+(0)} \left(\frac{df_+}{dq^2}\Big|_{q^2 = 0} - \frac{df_0}{dq^2}\Big|_{q^2 = 0}\right)$$

R.Hill

Factorization in SCET

 $p^2 \sim \Lambda^2$ BBNS; Chay and Kim; Bauer, Pirjol, Rothstein, I.S. Factorization at m_b $p^2 \sim Q^2$ $B \to M_1 M_2$ Nonleptonic $p^2 \sim \Lambda^2$ $p^2 \sim Q\Lambda$ $p^2 \sim \Lambda^2$ $A(B \to M_1 M_2) = A^{c\bar{c}} + N \left\{ f_{M_2} \zeta^{BM_1} \int du T_{2\zeta}(u) \phi^{M_2}(u) + f_{M_2} \int du dz T_{2J}(u, z) \zeta_J^{BM_1}(z) \phi^{M_2}(u) + (1 \leftrightarrow 2) \right\}$ $B \rightarrow \text{pseudoscalar:} f_+, f_0, f_T$ Form Factors $B \rightarrow \text{vector: } V, A_0, A_1, A_2, T_1, T_2, T_3$ $f(E) = \int dz \, T(z, E) \, \zeta_J^{BM}(z, E)$ "hard spectator", universality at "factorizable" $E\Lambda$ "soft form factor", "non-factorizable" $+ C(E) \zeta^{BM}(E)$

$$f_+(0) = \zeta^{B\pi} + \zeta_J^{B\pi}$$

 $|V_{ub}|f_{+}(0)$

From nonleptonic data: $B \rightarrow \pi \pi$

• Uses data to remove complex penguin amplitude, and color suppressed amplitude. ie. to eliminate LO hadronic parameters

$$\begin{bmatrix} |V_{ub}|f_{+}(0) = \left[\frac{64\pi}{mB^{3}f_{\pi}^{2}} \frac{Br(B^{-} \to \pi^{0}\pi^{-})}{\tau_{B^{-}}} |V_{ud}|^{2}G_{F}^{2} \right]^{1/2} \left[\frac{(C_{1} + C_{1})t_{c} - C_{2}}{C_{1}^{2} - C_{2}^{2}} \right] \left[1 + \mathcal{O}\left(\alpha_{s}(m_{b}), \frac{\Lambda_{\text{QCD}}}{E}\right) \right]$$

$$t_{c} = \frac{|T_{\pi\pi}|}{|T_{\pi\pi} + C_{\pi\pi}|} = \sqrt{\frac{Br(B^{0} \to pi^{+}\pi^{-})\tau_{B^{-}}}{Br(B^{-} \to \pi^{0}\pi^{-})\tau_{B^{0}}}} \frac{(1 + (1 - C_{\pi^{+}\pi^{-}}^{2} - S_{\pi^{+}\pi^{-}}^{2})^{1/2}\cos(2\beta) + S_{\pi^{+}\pi^{-}}\sin(2\beta)}{4\sin^{2}\gamma}$$
see Arnesen et al

 $|V_{ub}|f_+(0) = (7.6 \pm 1.9) \times 10^{-4}$ (agrees at 1-sigma with fits)

flat with γ units x $\left[\frac{3.9 \times 10^{-3}}{|Vub|}\right]$ 0.20 0.15 0.10 0.05 0.00 0.55 0.00 0.55 0.00 0.00 0.000.0

Light Cone Sum rules give $f_+(0) = 0.258 \pm 0.031$ (also agrees) talk by P. Ball

Shape Parameters, SCET, etc.

- gf_B
- $|V_{ub}|f_+(0)$

E scaling of SCET f.f.

•
$$\frac{1}{\beta} = \frac{(m_B^2 - m_\pi^2)}{f_+(0)} \left. \frac{df_0(q^2)}{dq^2} \right|_{q^2 = 0}$$
 $-\frac{1}{\beta} - 1 = \frac{d\ln(\zeta^{B\pi} + \zeta_J^{B\pi})}{d\ln E} \Big|_{E=\frac{m_B}{2}}$
 $\simeq -2$ if $\zeta^{B\pi} + \zeta_J^{B\pi} \sim \frac{1}{E^2}$

$$\delta = 1 - \frac{(m_B^2 - m_\pi^2)}{f_+(0)} \left(\frac{df_+}{dq^2} \Big|_{q^2 = 0} - \left. \frac{df_0}{dq^2} \Big|_{q^2 = 0} \right)$$

$$\delta = \frac{2\zeta_J^{\mathrm{B}\pi}}{\zeta^{\mathrm{B}\pi} + \zeta_J^{\mathrm{B}\pi}}\Big|_{E=\frac{m_B}{2}}$$

size of "hard scattering" relative to "soft f.f."

Inputs to code

- i) Expt. data with correlation matrix when available turn on/off datasets
- ii) Lattice FNAL/MILC and/or HPQCD play with:

take systematic error to be 100% correlated

$$E_{ij} = \sigma_i^2 \delta_{ij} + y^2 f_{in}^i f_{jn}^j$$
 (this increases uncertainty) - number of f+ and f0 points
error correlation analysis
ala Bob Kowalewski
turn on/off
turn on/off

iv) number of $a_n^{(J+)}$ and $a_n^{(J0)}$ dispersion parameters vary the choice

v) bounds $\sum_{n} a_n^2 \le 1$ or $\sum_{n} a_n^2 \le A$, treatment of truncation error

The Default Vub Fit

- 3 lattice points for each form factor (100% syst. correlation)
- Do FNAL and HPQCD separately
- All experimental data sets included
- NO scet or chpt points
- 3 a_n 's for f_+ and 2 b_n 's for f_0 , $\sum_n a_n^2 \le 1$
- $f_+(0) = f_0(0)$

errors dominated by lattice

> experimental errors - 3%

$$V_{\rm ub}^{\rm HPQCD} = (4.21 \pm 0.45) \times 10^{-3}$$
$$V_{\rm ub}^{\rm FNAL} = (3.82 \pm 0.44) \times 10^{-3}$$

Vub

$$V_{\rm ub}^{\rm HPQCD} = (4.21 \pm 0.45) \times 10^{-3}$$
$$V_{\rm ub}^{\rm FNAL} = (3.82 \pm 0.44) \times 10^{-3}$$

• insensitive to: dispersion bound $\sum a_n^2 \leq A$, chpt/scet input

• also insensitive to: lattice corr. matrix ala Bob K. ~ 0.01

 ~ 0.3

- mild: number of lattice points and which ones, num(a's) ~ 0.1
- depends on: FNAL vs. HPQCD, lattice norm (obviously)

 $f_{+}(0)$

• effects from: FNAL vs. HPQCD, num(a's)

 $f_{+}^{\text{HPQCD}}(0) = 0.20 \pm 0.02$ $f_{+}^{\text{HPQCD}}(0) = 0.22 \pm 0.03$

Other Shape parameters

$$\delta \equiv 1 - \frac{m_B^2 - m_\pi^2}{F_+(0)} \left(\frac{dF_+}{dq^2} \Big|_{q^2 = 0} - \frac{dF_0}{dq^2} \Big|_{q^2 = 0} \right) = 0.4 \pm 0.6 \pm 0.1 \pm 0.4 \,, \qquad \text{from Becher \& Hill}$$

The End

