Exclusive $B \rightarrow X_u$ decays with BaBar

Benoit VIAUD Université de Montréal On behalf of the BaBar collaboration

Why |V_{ub}| with exclusive decays ??

Most precise |V_{ub}| measurements to date: inclusive B->X_u

"Tension" with constraints from UT angles (e.g. sin2).

Large uncertainty on |V_{ub}| from theory !

 (b->cl)=50×
 (b->ul) -> tight kinematical cuts
 -> difficult treatment of the Fermi motion of the b inside the B.

=> Need an alternative approach: exclusive decays !

$$|V_{ub}|$$
 from Exclusive B $\rightarrow X_u$ I Decays (x_u= , , , ',...)

> Theory: more difficult to describe a specific final state an inclusive one

$$\Gamma_{ub} = \sqrt{\frac{\Delta B}{\tau_B} \Gamma_{thy}} \qquad \Gamma_{thy} = \frac{G_F^2}{24\pi^3} \int_{q_{min}^2}^{q_{max}^2} \left(f_+(q^2)\right)^2 p_\pi^3 dq^2$$

Evaluation of the $f_{+}(q')$ Form Factor (FF): Need theo. calculations

- LQCD (q² > 16 GeV²): HPQCD[1], FNAL[2]
- LCSR (q² < 16 GeV²): Ball-Zwicky[3]
- quark model : ISGW2 [4]
- Extrapolation to the full q² range:

Ex: Becirevic-Kaidalov (BK) parameterization

$$f^+(q^2,\alpha) = \frac{f_0}{(1-q^2/m_{B^*}^2)(1-\alpha q^2/m_{B^*}^2)}.$$

- -> unquenched LQCD / LCSR: th now down to ~12% !! (>16 / <16 GeV²) -> But need more to reach the same precision as inclusive decays.
 - \sim Submitting the set of the se

Experiments can help -> constraint on the FF shape

[1] Gulez & al, hep-lat/0601021
[2] Okamoto & al, hep-lat/0409116
[3] Ball & al, hep-ph/0406232
[4] Scora & al, hep-ph/9503486

12/14/2006

Tagged and untagged analyses

B→ I, Hadronic and semileptonic Tags

Once a BB event is tagged by finding a B_{tag} ...

- > Select $B \rightarrow I$ signal in the recoil of B_{tag} :
 - Only one -l pair, p_e(p_µ) > 0.5(0.8) GeV
 - No other tracks, small residual energy
- > $B \rightarrow l$ extracted in 3 q² bins

hadr. tag:

 $\begin{aligned} -q^2 &= (p_l + p_{miss})^2, \ p_{miss} = p_{Y(4S)} - p_{Btag} - p - p_l = p \\ -m_{ES} \ fit \ in \ m^2_{miss} \ bins \ to \ subtract \ combinatorics/ \ non \ BB \\ -N_{sig} &= \ (data - Backgrounds \ from \ MC), \\ MC \ rescaled \ with \ m^2_{miss} \ sideband \end{aligned}$

12/14/2006

Benoit VIAUD, CKM workshop, Nagoya

p_{πl}

Combine Hadronic & Semileptonic Tags, B⁺ & B⁰

> weighted averages + isospin symmetry: $(B^{0}-> -I^{+})=2$ $(B^{+}-> -0I^{+})$

- > Limited by statistics !
- > Largest systematics:
 - hadronic: m_{ES} fit, neutral and µ reconstruction
 - 1/2leptonic: Btag efficiency, cos² _B shape for backgrounds
 - both: BF & FF of semileptonic backgrounds

Untagged B^{0} -> $-I^{+}$, loose -reconstruction

206 fb⁻¹ , hep-ex/06xxxxx

> Novel technique ! No tight -reconstruction cuts : Signal Yield + Purity -

B^{0} -> $^{-}I^{+}$, loose , Signal Yield Extraction

- > 2+1 (E,m_{ES}; q²) extended binned max. likelihood fit $m_{\rm ES} = \sqrt{s/4 - |\mathbf{p}_B|^2}$ $\Delta E = E_B - \sqrt{s/2}$
- > Finds **19** scaling factors to be applied to MC histograms to fit data

12/14/2006

Prospects: $|V_{ub}|$ at Babar with 1/ab (end of 2008)

> Reduction of systematic uncertainties

- improved track and neutral reconstruction
- better knowledge of b->ul backgrounds (BF and FF)
- systematics based on data/MC comparisons (loose- : continuum, tagged analyses: cos² _B shape) might be reduced with higher statistics.

Combined with ~5 times more statistics:

Expected uncertainties, in terms of B ⁰ -> $-I^+v$ (Combine Hadr. & ½ leptonic Tags, B+& B0)										
method	N _{sig}	BF-stat(%)	_{BF-syst} (%)	_{BF-tot} (%)	Vub (%) Full q ² range	Vub (%) q²>16 GeV²				
Hadronic tag	B+ 130 B ⁰ 150					$\overline{\mathbf{J}}(1,0)$				
1/2 leptonic tag	B ⁺ 450 B ⁰ 280	6(13)	6(8)	8.5(15)	4 (7.5)	7(13)				
untagged	25000	2.5(5)	4(5)	4.5(7.5)	2 .5(3.2)	4(7)				
$ V_{ub} = (4.1 \pm 0.3^{+0.6}_{-0.4}) \times 10^{-3} - > (x.x \pm 0.1^{+0.6}_{-0.4}) \times 10^{-3}$										
12/14/2006 Benoit VIAUD, СКМ Full q ² range which reduction can we expect here ???										

Something new by the end of 2008 ??

Also on the way: $D \rightarrow (,K)I$

> Test of FF calculations

>
$$|V_{ub}|$$
 from $\frac{d\Gamma(B \to \pi \ell \nu)/dw}{d\Gamma(D \to \pi \ell \nu)/dw} = V_{ub} \left(\frac{M_B}{M_D}\right) \left(\frac{f_+^{B \to \pi}}{f_+^{D \to \pi}}\right)^2 w = \frac{M^2 + m_\pi^2 - q^2}{2Mm_\pi}$

12/14/2006

Summary

Back-up

12/14/2006

Theoretical side: on going work...

- > Extend FF calculations to the full q² range
 - moving NRQCD
 - non relativistic description of the b quark in a moving frame of reference (instead of B frame).
 B and in opposite directions.

 $p_b = m_b u + k$; u = 4 - veloctiy of $B = p_B / m_B = \gamma(1, \bar{v})$ K.Y Wong, LAT06

exact treatment D

Discretize this (k is small)

parameterization of the FF shape (Becher & Hill, hep-ph/0509090 ;

Ball hep-ph/0611108, ...)

$$f(t) = \frac{1}{P(t)\phi(t,t_0)} \sum_{k=0}^{\infty} a_k(t_0) z(t,t_0)^k = z(t,t_0) = \frac{\sqrt{t_+ - t} - \sqrt{t_+ - t_0}}{\sqrt{t_+ - t} + \sqrt{t_+ - t_0}}$$
Accounts for Calculable function to make a_k s look simple.
$$(t = q^2 = (p_{H}-p_L)^2, t_* = (m_{H}+m_L)^2, t_* = (m_{H}-m_L)^2).$$
Unitarity ->
$$\sum_{k=0}^{n_A} a_k^2 \le 1$$
Heavy quarks, B(Iv) in powers ->
of _{QCD}/m_B
$$\sum_{k=0}^{\infty} a_k^2 = 0 \text{ for der } (\Lambda/m_b)^3$$

Theoretical constraints + shape from data -> very precise knowledge of the shape.

Theoretical side: on going work...

- > Potential reduction of theoretical uncertainties: on going work in LQCD
 - improved matching between LQCD and continuum QCD (2-loops calculations or fully non-perturbative)
 - improved extrapolation to physical light quark masses (_{PT})
 - smaller lattice spacings
 - various types of actions (in addition to improved staggered AsqTad action, presently used by the FNAL and HPQCD calculations we use).
 - What else ??

12/14/2006

=> We need the to drop from ~13% to ~6% to reach a precision similar to inclusive B-> X_u IV decays:

Leading systematics (%) (detector and Continuum)

q ² bins (GeV ²)	0-2	12-14	22-26.4	q2<16	q2>16	Total	
Trk eff	1.6	1.8	9.2	1.9	1.8	1.1	
eff	4.7	3.5	7.0	2.9	1.7	1.9	
K ⁰ L & neutrons	0.9	1.6	2.8	1.2	1.4	1.3	
PID	7	2.6	7.0	2.6	3.6	2.9	
Tot Detector & K ⁰ L	8.6	5.0	13.8	4.5	4.6	3.9	
Continuum Yield	7	0.6	4	1.0	1.6	1.0	
Continuum 20.3 shape		1.5	10.2	2.6	3.2	2.3	
Total	23.7	7.1	27	6.3	7.8	5.7	

Untagged B-> ()I, -reconstruction PRD-RC 72, 051102 (2005)

|V_{ub}|

Precise measurements of $|V_{ub}|$ yield a stringent constraint on the description of CP violation by the Standard Model.

Complementary to sin2

Benoit VIAUD, CKM workshop, Nagoya

12/14/2006

|V_{ub}| from B> X_u| Decays

> Full decay rate: clean access to $|V_{ub}|$ (OPE+HQE: $_{th} < 5\%$!)

$$\Gamma(B \to_{u} \cup) X = \frac{G_{F}^{2} |V_{u}|^{2}}{1^{b} \pi^{3} 9} = \frac{1}{2} \frac{\int_{a}^{2} 1_{2} m \frac{\mu_{\pi}^{2}}{2} \frac{1}{m_{b}^{2}} \frac{\mu_{\pi}^{2}}{2} \frac{\mu_{\pi}^{2}}{2} \frac{\mu_{\pi}^{2}}{2} \frac{1}{m_{b}^{2}} O_{T}^{2} = \frac{1}{2} O_{T}^{2} O$$

<u>BUT</u>: difficult to measure: (b) cl)= $50 \times$ (b) ul) !!

<u>1st approach</u>: Inclusive selection, tight cuts (e.g. $E_1 > E_{cut}$)

- $|V_{ub}|$ from partial BF: $|V_{ub}|$ = (BF/ ...) = x.xx±x.xx (world ave)
- Most precise approach up to now, but <u>large contribution from</u> th.
 sensitive to the Fermi motion of the b inside the B (difficult to evaluate)
 - -> good to have an alternative approach...

<u>2nd approach</u>: Exclusive decays

Benoit VIAUD, CKM workshop, Nagoya

12/14/2006

B> I, Hadronic Tag

- Tag BB event with B_{tag}: fully reconstructed hadronic decay
- > Select B> 1 signal in the recoil of B_{tag}:
 - one 1 pair : p_e(p_µ) > 0.5(0.8) GeV
 - No other tracks, E_{res} small
- > Full reco. of $B_{tag} = >$ precise reconstruction
 - E, $m_{ES, i} p_{miss} = p_{Y(4S)} p_{Btag} p_{i} p_{i}$, m^{2}_{miss}
 - $q^2 = (p_1 + p_1)^2 = (p_1 + p_{miss})^2$

B) I extracted in 3 q² bins

- m_{ES} fit in m²_{miss} bins to subtract combinatorics/non BB events
- other backgrounds: MC, rescaled with m²_{miss} sideband
- BF(B) I) from the ratio of B-> I yields to B->XI yields + BF(B->XI): syst

B> I, semileptonic Tag

- Tag BB event with B_{tag} : B->D(*)I
 - $D^{0} \rightarrow K^{-}(+, 3, +, +, 0), \tilde{K}^{0}_{s} + -; D^{+} \rightarrow K^{-}2; D^{(*+)} \rightarrow D^{+/0}_{s} = 0$
 - m_D , $|p_l| > 0.8$ GeV, DI vertex,...
- Select B> 1 signal in the recoil of B_{tag}:
 - one | pair : $p_1 > 0.8 \text{ GeV}$
 - no other tracks, E_{res} small
- $q^2 = (m_R E)^2 |p|^2$ (assume B at rest in Y(4S) frame)
- Signal extraction: global event topology, 3 q² bins >

bal event topology, 3 q^2 bins Fit to $\cos^2 g$: - simultaneous to data and MC, - M_D sideband included to constrain p_n combinatorial background

- BF(B) 1): from MC + data control samples >
 - events with 2 non-overlapping B_{tag}'s

12/14/2006

5 Untagged B⁰-> ⁻I⁺, loose -reconstruction

- > Novel technique ! No tight -reconstruction cuts : Signal Yield ^ Purity
 - **I** pair: tight and I ID criteria, $|p_{e(\mu)}| > 0.5(1)$ GeV, $|\cos_{BY}| < 1$
 - Topology cuts to reduce non BB events.
 - Cuts optimized as a function of q²: Angle between Y and rest of event thrust axes, p_{miss} polar angle and m²_{miss}, W helicity angle

B> I, Hadronic and semileptonic Tags

Once a BB event is tagged by finding a $B_{tag} \ldots$

- > Select B> 1 signal in the recoil of B_{tag} :
 - Only one -l pair, No other tracks, small residual energy
- > B> l extracted in 3 q² bins

hadr. tag:

 $-q^2 = (p_l + p_{miss})^2$, $p_{miss} = p_{Y(4S)} - p_{Btag} - p - p_l = p$

 $-m_{ES}$ fit in m_{miss}^2 bins to subtract combinatorics/ non BB -other backgrounds: MC, rescaled with m_{miss}^2 sideband

- BF(B> 1) from the ratio of B-> | yields to B->XI yields + BF(B->XI): syst

<u>1/2-lep. tag</u>:

- $-q^2 = (m_B E)^2 |p|^2$ (hypo: B at rest in Y(4S) frame) -Fit to \cos^2_B
- BF(B) 1): efficiency from MC & data control samples (events with 2 non-overlapping B_{tag} 's)

12/14/2006

few definitions...

$$m_{\rm ES} = \sqrt{s/4 - |\mathbf{p}_B|^2} \,\Delta E = E_B - \sqrt{s/2}$$
$$\cos\theta_{BY} = (2E_B E_Y - m_B^2 - m_Y^2)/(2|\mathbf{p}_B||\mathbf{p}_Y|)$$
$$\cos^2\phi_B = \frac{\cos^2\theta_{BY} + \cos^2\theta_{B\pi\ell} + 2\cos\theta_{BY}\cos\theta_{B\pi\ell}\cos\gamma}{\sin^2\gamma}$$

In the Y(4S) frame: E_B , p_B = nominal values of the B energy and momentum, from 4-mom. conservation $p_Y = p + p_I$

 $|\cos_{BY}|$ and $|\cos^2_{B}| < 1$ if the 's are the only undetected particles...

12/14/2006

 2 = 423 for 389 d.o.f

12/14/2006

Results: F	Rel	at	ive	È	rro	ors	on		BF(q ²))				
q^2 bins (GeV ²)	0-2	2-4	4-6	6-8	8-10	10 - 12	12 - 14	14-16	16-18	18-20	20-22	22 - 26.4	$q^2 < 16$	$q^2 > 16$	Total
Fit error	15.2	14.4	12.8	14.8	15.4	19.2	13.9	25.2	17.6	28.5	20.2	27.7	5.3	10.3	4.8
Trk eff	1.6	1.7	1.3	3.1	3.8	1.3	1.8	7.1	2.3	1.7	2.2	9.2	1.9	1.8	1.1
γ eff	4.7	1.3	2.6	5.0	3.6	3.2	3.5	3.1	3.0	3.5	3.8	7.0	2.9	1.7	1.9
K_L^0 & neutrons	0.7	0.6	0.7	1.0	1.2	1.2	1.2	1.3	2.0	1.5	1.1	2.2	0.5	1.0	0.6
PID	7.0	2.5	2.1	1.9	0.7	2.7	2.6	2.5	2.6	3.4	2.9	7.0	2.6	3.6	2.9
Continuum yield	7.0	0.5	0.6	0.2	0.9	1.0	0.6	0.8	0.6	1.9	1.1	4.0	1.0	1.6	1.0
Continuum q^2	20.1	1.5	1.0	1.0	1.7	1.8	1.5	2.0	1.5	3.3	4.0	8.7	2.4	1.9	1.8
Continuum $m_{\rm ES}$	1.1	0.3	0.1	0.1	0.1	0.1	0.3	0.6	0.3	0.6	0.7	1.0	0.2	0.5	0.2
Continuum ΔE	3.0	1.6	0.5	1.0	1.5	0.2	0.1	1.2	0.6	1.8	3.8	5.2	1.0	2.5	1.4
$b \rightarrow u \ell \nu$ BF	1.2	1.4	0.7	0.7	1.0	1.4	1.1	1.8	1.7	3.6	10.4	12.1	0.9	3.4	1.2
SF param	0.4	0.5	0.3	0.5	0.1	0.1	0.1	0.4	0.4	4.1	5.7	14.9	0.2	2.1	0.7
$B \rightarrow \rho \ell \nu \ FF$	1.3	0.7	1.8	1.1	0.8	1.1	1.2	3.2	0.5	3.3	1.3	4.3	0.9	0.8	0.6
$B^0 \rightarrow \pi^- \ell^+ \nu FF$	0.4	0.5	0.5	0.5	0.5	0.5	0.5	0.8	0.7	0.7	1.1	3.5	0.5	1.3	0.7
FSR	0.7	1.5	2.2	1.9	2.6	2.7	2.2	0.6	2.5	2.0	1.3	1.1	1.9	1.8	1.9
$b \rightarrow c \ell \nu \text{ BF}$	1.8	2.1	1.1	2.2	4.6	1.2	2.4	2.2	1.3	2.5	1.7	2.2	0.9	1.0	0.8
$B \rightarrow D^* \ell \nu$ FF	0.7	1.1	0.1	1.6	3.1	0.8	1.4	1.0	0.9	1.2	0.6	2.7	0.7	0.4	0.6
$B \rightarrow D \ell \nu$ FF	1.7	1.2	0.7	0.3	2.2	0.4	0.1	0.7	0.6	0.9	0.4	0.7	0.1	0.4	0.2
$\Upsilon(4S) \rightarrow B^0 \bar{B^0} BF$	2.1	2.5	1.5	1.5	1.3	1.7	1.6	1.2	1.6	1.0	2.4	1.9	1.7	1.7	1.7
$D \rightarrow X \ell \nu$ BF	2.3	2.8	1.1	1.3	1.6	1.1	1.1	0.9	0.6	0.9	1.0	0.8	0.4	0.5	0.3
$D \rightarrow K_L^0$ BF	0.6	1.7	2.3	1.5	2.0	2.3	1.0	4.2	1.8	3.9	1.0	1.7	1.1	1.0	1.1
B counting	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1
Signal MC stat error	1.5	1.7	1.6	1.9	1.6	1.9	1.4	1.8	1.4	1.6	1.3	1.5	0.5	0.6	0.4
Total syst error	23.7	7.0	6.2	8.1	9.6	7.3	7.1	11.0	7.0	11.0	14.9	27.0	6.3	7.8	5.7
Total error	28.2	16.1	14.2	16.9	18.2	20.5	15.6	27.5	19.0	30.6	25.1	38.7	8.2	12.9	7.5

-Dominant syst. errors: Detector effects, Continuum description
 -Fit of the backgrounds yields in several q² bins (thanks to high statistics due to loose) => reduced systematic error due backgrounds BF and FF.

12