Photon Energy Cut Effects in $B \rightarrow X_s \gamma$ at NNLO

Thomas Becher **‡**Fermilab

CKM workshop, Nagoya U., Dec. 12-16 2006

Outline

- The photon energy cut $B \rightarrow X_s \gamma$
 - Appearance of low scales
 - Factorization and resummation
- Event fraction at NNLO

TB, M. Neubert, hep-ph/0512208, hep-ph/0603140, hep-ph/0610067

• Photon energy moments at NNLO

M. Neubert, hep-ph/0506245

Branching ratio vs. Moments

- $B \rightarrow X_s \gamma$ branching ratio:
 - FCNC process, suppressed in SM
 - Sensitive to New Physics
- Moments of the decay spectrum

$$\langle E_{\gamma} \rangle \qquad \sigma_E^2 = \langle E_{\gamma}^2 \rangle - \langle E_{\gamma} \rangle^2$$

- Determination of m_b and heavy quark parameter μ_{π}
- Insensitive to New Physics

Prediction of the rate and moments: OPE

• The good "news"

"inclusive B-meson decay rate" = "perturbative calculation of b-quark decay rate" + $O(\Lambda^2/m_b^2) \sim \mu_{\pi}, \mu_G$

- The rate and moments of the photon energy spectrum can be calculated accurately using perturbation theory.
- However, there are two complications.

Complications

1. Non-OPE corrections for operators other than Q₇

- 1/*m*_b power corrections
- twist expansion: non-local, functional hadronic input $\rightarrow M$. Neubert's talk
- 2. For cut rate with $E_{\gamma} > E_0$ not an expansion in $1/m_b$, but in $1/\Delta$ and $\alpha_s(\Delta)$, where $\Delta = m_b 2E_0$.
 - OPE breaks down for $E_0 > 1.8$ GeV. Shape function.

Photon energy cut $E_{\gamma} > E_0$

- Experimentally very energetic photon is necessary to suppress background. Impose $E_{\gamma} > E_0$.
 - Belle has $E_0=1.8$ GeV, BaBar $E_0=1.9$ GeV

• Note:
$$E_{\gamma} < m_B / 2 \approx 2.6 \text{ GeV}$$

Scales in the presence of cut

- With a cut $E_Y > E_0$, problem contains three relevant scales
 - Hard scale: *m*_b
 - Soft scale: $\Delta = m_b 2E_0$
 - Jet scale: $M_X \sim (m_b \Delta)^{1/2}$
- The physics associated with the three scales can be factorized:

Shape-function vs. OPE region

• For E_0 >1.8 GeV, Δ <1GeV: OPE breaks down. Need non-perturbative shape function.

> Intermediate region $\Lambda \ll \Delta \ll m_b$: SCET, Multi-Scale OPE (Neubert '04), expansion in $1/\Delta$, $\alpha_s(\Delta)$, $\Delta = m_b - 2E_0$

• For *E*₀<1.0 GeV, standard OPE works.

Event fraction

• Define event fraction $F(E_0) = \Gamma_{E_{\gamma} > E_0} / \Gamma_{tot}$

$$F(E_0) = h(m_b, \mu) \int_0^{\Delta} dP \int_0^P d\omega J(m_b(P - \omega), \mu) S(\omega, \mu)$$

- Partial BR is obtained by combining with result total rate of Misiak et al.
- Moments can be obtained from integrals over $F(E_0)$.
- Have evaluated the three parts to NNLO
- Use RG evolution in SCET to separate the contributions from different scales.

RG evolution in SCET

- Evaluate each part at its characteristic scale, evolve to (arbitrary) common reference scale μ.
 - No large (Sudakov) logarithms of scale ratios

Two-loop calculations of jet- and soft function

- Soft function is the partonic shape function.
- Jet-function is propagator in axial light-cone gauge.
- Jet and soft functions are distributions. Manage to avoid dealing with distribution valued Feynman diagrams.
- In hep-ph/0610067, we infer the hard function *h* from Melnikov & Mitov '05.

Solution of RG evolution: jet-function

$$\begin{aligned} \frac{dJ(p^2,\mu)}{d\ln\mu} &= -\left[2\Gamma_{\text{cusp}}(\alpha_s)\ln\frac{p^2}{\mu^2} + 2\gamma^J(\alpha_s)\right]J(p^2,\mu) \\ &- 2\Gamma_{\text{cusp}}(\alpha_s)\int_0^{p^2}dp'^2\frac{J(p'^2,\mu) - J(p^2,\mu)}{p^2 - p'^2} \\ \begin{aligned} \text{Sudakov factor} & -2\Gamma_{\text{cusp}}(\alpha_s)\int_0^{p^2}dp'^2\frac{J(p'^2,\mu) - J(p^2,\mu)}{p^2 - p'^2} \\ \\ &J(p^2,\mu) &= \exp\left[-4S(\mu_i,\mu) + 2a_{\gamma J}(\mu_i,\mu)\right] \\ &\times \tilde{j}(\partial_\eta,\mu_i)\frac{e^{-\gamma_E\eta}}{\Gamma(\eta)}\frac{1}{p^2}\left(\frac{p^2}{\mu_i^2}\right)^{\eta}, \end{aligned} \qquad \begin{aligned} \eta &= 2\int_{\mu_0}^{\mu_i}\frac{d\mu}{\mu}\Gamma_{\text{cusp}}[\alpha_s(\mu)] \\ &= 2a_{\Gamma}(\mu_i,\mu). \end{aligned}$$

- Associated jet-function \tilde{j} is Laplace transform of $J(p^2, \mu_i)$.
- RG evolution of shape function S(ω, μ_i) has exactly the same form.

"Wonderful formula"

$$\begin{split} F(E_0) &= U(\mu_h, \mu_i, \mu_0; \mu) \left(\frac{m_b}{\mu_h}\right)^{-2a_{\Gamma}(\mu_h, \mu)} \left(\frac{m_b\Delta}{\mu_i^2}\right)^{2a_{\Gamma}(\mu_i, \mu)} \left(\frac{\Delta}{\mu_0}\right)^{-2a_{\Gamma}(\mu_0, \mu)} \\ &\times h\left(\frac{m_b}{\mu_h}\right) \tilde{j} \left(\ln \frac{m_b\Delta}{\mu_i^2} + \partial_\eta\right) \tilde{s} \left(\ln \frac{\Delta}{\mu_0} + \partial_\eta\right) \frac{e^{-\gamma_E \eta}}{\Gamma(1+\eta)} \left[1 - \frac{\eta(1-\eta)}{6} \frac{\mu_{\pi}^2}{\Delta^2} + \dots\right] + \delta F(E_0), \\ \eta &= 2 \int_{\mu_i}^{\mu_0} \frac{d\mu}{\mu} \Gamma_{\text{cusp}}(\alpha_s(\mu)) \approx 0.2 \end{split} \begin{aligned} \text{leading } \Lambda/\Delta \qquad \Delta/m_b \\ \text{power correction} \end{aligned}$$

- All scales separated, no "large" perturbative logarithms.
- Include Δ/m_b corrections in fixed order PT.
- Leading power correction is $\eta (\Lambda_{\rm QCD}/\Delta)^3 \approx 2\%$
- Standard fixed order OPE result for $\mu_h = \mu_i = \mu_0 = \mu$.

Combination with fixed order result

$$T = F(1.6 \text{GeV})/F(1.0 \text{GeV})$$
$$\text{Br}(\bar{B} \to X_s \gamma) \big|_{E_{\gamma} > 1.6 \text{GeV}} = T \times \underbrace{\text{Br}(\bar{B} \to X_s \gamma)}_{\Delta \approx 2.5 \text{GeV}, \text{ fixed order OK}}$$

- We combine *T* with fixed order result of Misiak et al. at $E_0=1.0$ GeV.
- Correlation of uncertainties small
 - Parameter dependence of T small.
 - μ_h dependence of T is small.
- We combine individual uncertainties quadratically.

Scale variation of T

$$T = F(1.6 \text{GeV}) / F(1.0 \text{GeV})$$

 $T = 0.93^{+0.03}_{-0.05\,\mathrm{pert}} \pm 0.02_{\mathrm{hadr}} \pm 0.02_{\mathrm{pars}}$

Note: fixed order result is T=0.96

Beyond $E_0=1.6$ GeV

- HFAG extrapolates all expt. results to common value of $E_0=1.6$ GeV
 - 1.6 GeV is lower than what is expt. achieved.
 - Use model shape function with two parameters (m_b and μ_{π}).
 - (Too?) small extrapolation uncertainty,
 - e.g. 1% for extrapolation from $E_0=1.9$ GeV to 1.6GeV
 - Note: Babar, hep-ex/0607071, obtains 20% different value when extrapolating with two different schemes!!
- Analysis can be improved
 - Try to use MSOPE result up to $E_0=1.8$ GeV.
 - If shape-function is necessary: estimate uncertainty from unknown shape. Include known two-loop results?

Moments

- MSOPE result for m_b and μ_{π} from moments consistent with $B \rightarrow X_c lv$ moment analysis.
- Knowledge of anomalous dimensions sufficient. Two-loop constants drop out.

Summary

• Combination of our NNLO evaluation of cut-effects with result of Misiak et al. for total rate leads to

 $Br(\bar{B} \to X_s \gamma) = (2.98 \pm 0.26) \cdot 10^{-4} \text{ for } E_{\gamma} > 1.6 \text{GeV}$

- ⁺⁴/₋₆% perturbative, 4% parametric, 5% power corrections, 3% interpolation in *m*_c.
- 1.4σ below exp. value. 1-2σ below NLO value. (Gambino Misiak '01 found BR=(3.6±0.3)x10⁻⁴ at NLO.)
- To do: improve extrapolation to experimental *E*₀
 - Use MSOPE result at experimental value of E_0 ?
 - Vary shape function model, include 2-loop effects.

Theory vs. Experiment

- Experimental average (HFAG) $Br(\bar{B} \to X_s \gamma) = (3.55 \pm 0.24^{+0.09}_{-0.10} \pm 0.03) \cdot 10^{-4}$
 - for cut $E_{\gamma} > E_0 = 1.6 \text{GeV}$
 - stat.+syst., extrapolation to low E_0 , $b \rightarrow \gamma d$ subtr.
- Theory @ NNLO (hep-ph/0610067 with hep-ph/0609232)

$$Br(\bar{B} \to X_s \gamma) = (2.98 \pm 0.26) \cdot 10^{-4}$$

- ⁺⁴/₋₆% perturbative, 4% parametric, 5% power corrections, 3% interpolation in *m*_c.
- 1.4σ below exp. value. 1-2σ below NLO value. (Gambino Misiak '01 found BR=(3.6±0.3)x10⁻⁴ at NLO.)