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Outline

• The photon energy cut B→Xsγ

• Appearance of low scales
• Factorization and resummation

• Event fraction at NNLO

• Photon energy moments at NNLO
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Branching ratio vs. Moments
• B→Xsγ branching ratio:

• FCNC process, suppressed in SM

• Sensitive to New Physics

• Moments of the decay spectrum

• Determination of mb and heavy quark 
parameter µπ 

• Insensitive to New Physics

〈Eγ〉 σ2
E = 〈E2

γ〉 − 〈Eγ〉2



Prediction of the rate and moments: OPE
• The good “news”

• The rate and moments of the photon energy 
spectrum can be calculated accurately using 
perturbation theory.

• However, there are two complications.

“inclusive B-meson decay rate” 
=  “perturbative calculation of b-quark decay rate” 

+ O(Λ2/mb2) 
∝ µπ, µG



Complications

1. Non-OPE corrections for operators other than Q7 
• 1/mb power corrections
• twist expansion: non-local, functional hadronic 

input
2. For cut rate with Eγ>E0 not an expansion in 1/mb, 

but in 1/Δ and αs(Δ), where Δ=mb-2E0. 
• OPE breaks down for E0 > 1.8 GeV. Shape function.

→ M. Neubert’s talk
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selected by requiring at least three reconstructed charged
particles and the normalized second Fox-Wolfram mo-
ment R∗

2 to be less than 0.55. To reduce radiative Bhabha
and two-photon backgrounds, the number of charged par-
ticles plus half the number of photons with energy above
0.08 GeV is required to be ≥ 4.5.

Event shape variables are used to exploit the difference
in topology of isotropic BB events and jet-like continuum
events. This is accomplished by the R∗

2 requirement as
well as a single linear discriminant formed from nineteen
different variables. Eighteen of the quantities are the sum
of charged and neutral energy found in 10-degree cones
(from 0 to 180 degrees) centered on the photon candi-
date direction; the photon energy is not included. Ad-
ditionally the discriminant includes R′

2/R∗
2, where R′

2 is
the normalized second Fox-Wolfram moment calculated
in the frame recoiling against the photon, which for ISR
events is the qq rest frame. The discriminant coefficients
were determined by maximizing the separation power be-
tween simulated signal and continuum events.

Lepton tagging further reduces the backgrounds from
continuum events. About 20% of B mesons decay semi-
leptonically to either e or µ. Leptons from hadron de-
cays in continuum events tend to be at lower momentum.
Since the tag lepton comes from the recoiling B meson,
it does not compromise the inclusiveness of the B → Xsγ
selection. The tag lepton is required to have momentum
p∗e > 1.25 GeV/c for electrons and p∗µ > 1.5 GeV/c for
muons. Additionally requiring the photon-lepton angle,
cos θ∗γ" > −0.7 removes more continuum background, in
which the lepton and photon candidates tend to be back-
to-back. Finally the presence of a relatively high-energy
neutrino in semi-leptonic B decays is exploited by requir-
ing the missing energy of the event, E∗

miss > 0.8 GeV/c.
Virtually all of the tagging leptons arise from the decay
B → Xc#ν. The rate of such events in the simulation is
corrected as a function of lepton momentum [17].

The event selection is chosen to maximize the statis-
tical significance of the expected signal using simulated
signal (KN with mb =4.80 GeV/c2, µ2

π = 0.30 GeV2) and
background events, allowing for the low statistics of the
off-resonance data used for the subtraction of continuum
background. After selection the low energy range, 1.6 <
E∗

γ < 1.9 GeV, is dominated by the BB background,
while the high energy range, 2.9 < E∗

γ < 3.4 GeV, is
dominated by the continuum background; they provide
control regions for the BB subtraction and continuum
subtraction, respectively. The signal region lies between
1.9 GeV and 2.7 GeV. The signal efficiency (≈ 1.6% for
this E∗

γ range) depends on E∗
γ and the signal model, but

has negligible dependence on the details of the fragmen-
tation of the Xs.

The BB background is estimated with the simulated
BB data set. It consists predominantly of photons orig-
inating from π0 or η decays (≈ 80%). Other significant
sources are n’s which fake photons by annihilating in the

calorimeter and electrons that are misreconstructed or
lost, or that undergo hard Bremsstrahlung. The π0(η)
background simulation is compared to data by using the
same selection criteria as for B → Xsγ but removing the
π0(η) vetos. The photon energy and lepton momentum
thresholds are relaxed to E∗

γ > 1.0 GeV, p∗e > 1.0 GeV/c,
p∗µ > 1.1 GeV/c to gain statistics. The yields of π0(η) are
measured in bins of E∗

π0(η) by fitting the γγ mass dis-
tributions in on-resonance data, off-resonance data and
simulated BB background. Correction factors to the π0

(η) components of the BB simulation are derived from
these yields, including a small adjustment for the dif-
ferent efficiencies of the π0 (η) vetoes between data and
simulation. As no n control sample could be isolated, this
source of BB background is corrected by comparing in
data and simulation the inclusive p yields in B decay and
the calorimeter response to p’s, using a Λ → pπ+ sam-
ple. The electron component of the BB simulation is cor-
rected with electrons from a Bhabha data sample, taking
into account the lower track multiplicity of these events
compared to the signal events. Finally, the small contri-
butions from ω and η′ decays are corrected using inclusive
B decay data. After including all corrections and system-
atic errors the expected background yield from the simu-
lation in the BB control region (1.6 < E∗

γ < 1.9 GeV) is
1667± 54 events, compared to 1790± 64 events observed
in data after continuum subtraction. Note that a small
contribution in this region from the expected signal (≈ 20
to 40 events) has been neglected in this comparison. In
the high energy control region 2.9 < E∗

γ < 3.4 GeV the
expected background is 390 ± 20 events, compared to
393 ± 58 events observed in data.

 (GeV)!E*
1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4

E
v

e
n

ts
 /

 1
0

0
 M

e
V

-100

-50

0

50

100

150

200

250

Signal Region

BABAR

FIG. 1: The photon energy spectrum after background sub-
traction, uncorrected for efficiency. The inner error bars are
statistical and the outer include systematic errors added in
quadrature. The histograms show the spectra for values of
mb and µ2

π from the best fits to the moments in the kinetic
scheme (dashed) and shape function scheme (dotted), nor-
malized to the data in the signal region.

Figure 1 shows the measured spectrum for signal and

Photon energy cut Eγ>E0

• Experimentally very energetic photon is necessary 
to suppress background. Impose Eγ>E0.

• Belle  has E0=1.8 GeV, BaBar E0=1.9 GeV

• Note: Eγ < mB/2 ≈ 2.6 GeV

• beam background.

The photon spectra for ON and scaled OFF data samples along with the results of
subsequent background subtractions are plotted in Fig. 1(a). The B → Xsγ photon energy
spectrum that has been corrected for efficiency is shown in Fig. 1(b). The analysis measured
the branching fraction,

B(B → Xsγ) = (3.55 ± 0.32+0.30+0.11
−0.31−0.07) × 10−4, (1)

where the errors are statistical, systematic and theoretical, respectively. This result agreed
with the latest theoretical calculations [15, 16], as well as with previous measurements made
by CLEO [17] and Belle [18].
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FIG. 1: From [12]. (a) Photon energy spectra in the Υ(4S) frame. (b) Efficiency-corrected photon

energy spectrum. The two error bars show the statistical and total errors.

MOMENT MEASUREMENTS

We follow the procedure used in the published analysis [12], with some slight variations.
No attempt is made to correct for the part of the spectrum that is not measured with
a satisfactory precision i.e from energy below 1.8 GeV. We apply lower energy threshold
cuts as measured in the Υ(4S) rest frame (E∗

cut) to the efficiency corrected spectrum, from
which we obtain truncated first and second moments. Corrections are applied to recover the
moments such that the lower energy thresholds correspond to quantities measured in the
B-meson rest frame (Ecut).

A simple procedure is used to unfold the effects of detector resolution, the small B-meson
boost in the Υ(4S) frame, and that of the 100 MeV wide bins. We define the first moment
as 〈Eγ〉 (mean) and the second moment as ∆E2

γ ≡
〈

E2
γ

〉

−〈Eγ〉2 (variance). The corrections
are as follows:
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FIG. 2. Observed laboratory frame photon energy spectrum (weights per 100 MeV) for On
minus scaled Off minus B backgrounds, the putative b → sγ plus b → dγ signal. No corrections have

been applied for resolution or efficiency. Also shown is the spectrum from Monte Carlo simulation
of the Ali-Greub spectator model with parameters 〈mb〉 = 4.690 GeV, PF = 410 MeV/c, a good
fit to the data.
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Scales in the presence of cut
• With a cut Eγ>E0 , problem contains three 

relevant scales
• Hard scale:  mb

• Soft scale:    Δ=mb-2E0

• Jet scale:       MX~(mbΔ)1/2

• The physics associated with the three scales 
can be factorized:

hard function

ΓEγ>E0 = H · J ⊗ S

jet function
soft function/

shape function



Shape-function vs. OPE region
• For E0>1.8 GeV, Δ<1GeV: OPE breaks down. 

Need non-perturbative shape function.

• For E0<1.0 GeV, standard OPE works.

Intermediate region Λ≪Δ≪mb:

SCET, Multi-Scale OPE (Neubert ‘04),

expansion in 1/Δ, αs(Δ), Δ=mb-2E0



Event fraction
• Define event fraction 

• Partial BR is obtained by combining with result 
total rate of Misiak et al.

• Moments can be obtained from integrals over     
F(E0). 

• Have evaluated the three parts to NNLO

• Use RG evolution in SCET to separate the 
contributions from different scales.

F (E0) = h(mb, µ)

∫ ∆

0

dP

∫ P

0

dω J(mb(P − ω), µ) S(ω, µ)

F (E0) = ΓEγ>E0/Γtot



RG evolution in SCET

• Evaluate each part at its characteristic scale, 
evolve to (arbitrary) common reference scale µ.

• No large (Sudakov) logarithms of scale ratios 

J(µi)

S(µ0)

h(µh)mb

√
mb∆

∆

µ



• Soft function is the partonic shape function.
• Jet-function is propagator in axial light-cone gauge.
• Jet and soft functions are distributions. Manage to avoid 

dealing with distribution valued Feynman diagrams.
• In hep-ph/0610067, we infer the hard function h from 

Melnikov & Mitov ‘05.

Two-loop calculations of jet- and soft function

Figure 1: Two-loop diagrams contributing to the jet function in QCD. The circle-cross vertices

denote the Wilson lines. Not shown are additional diagrams resulting from mirror images in which

the two external points are exchanged. The first diagram is the full fermion two-point function, not

just the one-particle irreducible part.

Our calculation of the jet function employs the representation (4) of the function J(p2, µ) in terms
of ordinary QCD quark and gluon fields. The relevant two-loop diagrams are shown in Figure 1.

Equally well, one could use the SCET Lagrangian together with (3) to perform the calculation. In

this case diagrams in which a quark emits more than one gluon would also be present, in addition to

the topologies shown in Figure 1. Also, the analysis would be complicated by the fact that the SCET

Feynman rules are more complicated that those of QCD.

2.1 Evaluation of the two-loop diagrams

We first discuss the evaluation of the bare quantity jbare(Q
2) and later discuss its renormalization.

Let us begin by quoting the result for the one-loop master integral

∫
ddk

(−1)−a−b−c
(
k2 + i0

)a [
(k + p)2 + i0

]b
(n̄ · k + i0)c

= iπ
d
2

(
−p2
) d
2
−a−b

(n̄ · p)−c J(a, b, c) , (8)

with

J(a, b, c) =
Γ(d

2
− b) Γ(d

2
− a − c) Γ(a + b − d

2
)

Γ(a) Γ(b) Γ(d − a − b − c) . (9)

Note that there is a mismatch of minus signs on both sides of the relation (8). While (−1)−c appears in
the numerator of the loop integral, no such factor occurs on the right-hand side. This is a peculiarity

of loop integrals involving light-cone propagators, and it prevents a natural generalization of the
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Figure 1: Two-loop graphs contributing to the soft function. Double lines denote heavy-quark prop-
agators, while crosses denote possible insertions of the operator (ω + in · D + i0)−1.

loop techniques. Dimensional analysis implies that an n-loop contribution to the matrix element in
the integrand of the contour integral is proportional to (−ω)−1−2nε , where d = 4− 2ε is the dimension
of space-time. The relevant contour integration yields

1
2πi

!

|ω|=Ω

dω (−ω)−1−2nε = −Ω−2nε sin 2πnε
2πnε

. (9)

The two-loop Feynman diagrams contributing to the matrix element in (8) are shown in Fig-
ure 1. They are on-shell heavy-quark self-energy diagrams with an operator insertion of the gauge-
covariant light-cone propagator. Instead of drawing a separate diagram for each insertion, we draw
the topology for a set of diagrams and indicate with a cross the locations where the operator can be
inserted. The loop integrals arising in the calculation of the soft function contain heavy-quark as
well as light-cone propagators. The one-loop master integral is

∫
ddk

(−1)−a−b−c

(
k2 + i0

)a (v · k + i0)b (n · k + ω + i0)c = iπ
d
2 2b (−ω)d−2a−b−c I1(a, b, c) , (10)

where ω ≡ ω + i0, and

I1(a, b, c) =
Γ(a + b − d

2 )Γ(2a + b + c − d)Γ(d − 2a − b)
Γ(a)Γ(b)Γ(c)

. (11)

The most general two-loop loop integral we need has the form
∫

ddk ddl
(−1)−a1−a2−a3−b1−b2−b3−c1−c2

(
k2)a1 (l2)a2 [(k − l)2]a3 (v · k)b1 (v · l)b2 [v · (k + l)]b3 (n · k + ω)c1 (n · l + ω)c2

= −πd 2b1+b2+b3 (−ω)2d−2a1−2a2−2a3−b1−b2−b3−c1−c2 I2(a1, a2, a3, b1, b2, b3, c1, c2) , (12)

where all denominators have to be supplied with a “+i0” prescription. Note that we do not restrict the
exponents a1, . . . , c2 to be positive. Loop integrals with non-trivial numerators are written as linear
combinations of integrals for which some of the indices take negative values. A third light-cone
propagator, [n·(k−l)+ω]−1, can be eliminated using partial fractioning followed by a shift of the loop
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TB, M. Neubert, hep-ph/0512208
TB, M. Neubert, hep-ph/0603140

Soft function

Jet-function



Solution of RG evolution: jet-function

• Associated jet-function j is Laplace 
transform of J(p2,µi).

• RG evolution of shape function S(ω, µi) 
has exactly the same form.

form factor is infrared divergent and must be regular-
ized. When the SCET graphs are subtracted from the
QCD result, the infrared poles in 1/ε get cancelled and
replaced by ultraviolet poles. To obtain the matching co-
efficient we introduce a renormalization factor ZV , which
absorbs these poles. At one-loop order this gives [6]

CV (Q2, µ) = 1 +
CF αs

4π

(
−L2 + 3L − 8 +

π2

6

)
,

where L = ln(Q2/µ2) and αs = αs(µ). The two-loop
expression for CV can be found in [1]. The scale depen-
dence of the Wilson coefficient is governed by the evolu-
tion equation

dCV (Q2, µ)

d lnµ
=

[
Γcusp(αs) ln

Q2

µ2
+ γV (αs)

]
CV (Q2, µ) ,

(1)

where Γcusp is the universal cusp anomalous dimension
of Wilson loops with light-like segments [13], which is
associated with the appearance of Sudakov double loga-
rithms. The quantity γV accounts for single-logarithmic
evolution effects. The anomalous dimension can be ob-
tained from the coefficient of the 1/ε pole term in the
renormalization factor ZV . Using the results of [12] it
can be calculated at three-loop order. The result is pre-
sented in [1].

The jet function J is defined in terms of the disconti-
nuity of a vacuum correlator of two quark fields, made
gauge invariant by the introduction of Wilson lines. It
obeys the integro-differential evolution equation [14]

dJ(p2, µ)

d ln µ
= −

[
2Γcusp(αs) ln

p2

µ2
+ 2γJ(αs)

]
J(p2, µ)

− 2Γcusp(αs)

∫ p2

0
dp′2

J(p′2, µ) − J(p2, µ)

p2 − p′2
.

We encounter again the cusp anomalous dimension, and
in addition a new function γJ , which has been calculated
in [14] at two-loop order, and whose three-loop coefficient
is determined in [1].

III. SOLUTIONS OF THE RG EQUATIONS

The exact solution to the evolution equation (1) is

CV (Q2, µ) = exp
[
2S(µh, µ) − aγV (µh, µ)

]

×
(

Q2

µ2
h

)−aΓ(µh,µ)

CV (Q2, µh) , (2)

where µh ∼ Q is a hard matching scale, at which the
value of the coefficient CV is calculated using fixed-order
perturbation theory. The Sudakov exponent S and the
exponents an are given by

S(ν, µ) = −
αs(µ)∫

αs(ν)

dα
Γcusp(α)

β(α)

α∫

αs(ν)

dα′

β(α′)
,

aΓ(ν, µ) = −
αs(µ)∫

αs(ν)

dα
Γcusp(α)

β(α)
, (3)

and similarly for aγV , where β(αs) = dαs/d lnµ is
the β-function. The explicit perturbative expansions of
these expressions valid at next-to-next-to-leading order
(NNLO) in renormalization-group (RG) improved per-
turbation theory are given in [1].

An important object in the derivation of the solution
to the evolution equation for J is the associated jet func-
tion j̃, which has originally been defined in terms of an
integral over the jet function followed by a certain re-
placement rule [15]. More elegantly, it can be obtained
by the Laplace transformation

j̃
(

ln
Q2

µ2
, µ

)
=

∫
∞

0
dp2 e−sp2

J(p2, µ) ,

where s = 1/(eγEQ2). The inverse transformation is

J(p2, µ) =
1

2πi

∫ c+i∞

c−i∞

ds esp2

j̃
(

ln
1

eγEs µ2
, µ

)
. (4)

Using the evolution equation for the jet function we find
that the associated jet function obeys

d

d lnµ
j̃
(

ln
Q2

µ2
, µ

)

= −
[
2Γcusp(αs) ln

Q2

µ2
+ 2γJ(αs)

]
j̃
(

ln
Q2

µ2
, µ

)
,

which is analogous to the evolution equation (1) for the
hard function. Inserting the solution to this equation into
the inverse transformation (4) we obtain

J(p2, µ) = exp
[
−4S(µi, µ) + 2aγJ (µi, µ)

]

× j̃(∂η, µi)
e−γEη

Γ(η)

1

p2

(
p2

µ2
i

)η

, (5)

where η = 2aΓ(µi, µ), and ∂η denotes a derivative with
respect to this quantity. The above form of the result is
valid as long as η > 0 (i.e., µ < µi). For negative η the
singularity at p2 = 0 must be regularized using a star
distribution [1]. Relation (5) is one of the main results
of this Letter. It relates J to the associated jet function
j̃ evaluated at the scale µi, where it can be computed
using fixed-order perturbation theory. At one-loop order

j̃(L, µ) = 1 +
CF αs

4π

(
2L2 − 3L + 7 −

2π2

3

)
,

where in (5) the argument L is replaced by the deriva-
tive operator ∂η. The two-loop expression for j̃ can be
extracted from [14].
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where η = 2aΓ(µi, µ). This solution is valid as long as η > 0, which implies that µ < µi.
Equation (38) is completely analogous to the solution for the evolution equation of the B-
meson shape function found in [18, 21] using a technique developed in [23].

Using the connection between J and j̃ implied by Laplace transformation, it is possible to
derive an even more elegant expression for the jet function J(p2, µ), which does not involve
an integral and which is valid for both µ > µi and µ < µi. The result relates J to the
associated jet function j̃ evaluated at the scale µi, where it can be computed using fixed-order
perturbation theory. We obtain [Refer to the “wonderful formula” in B → Xsγ decay?]

J(p2, µ) = exp
[
−4S(µi, µ) + 2aγJ (µi, µ)

]
j̃(∂η, µi)

[
1

p2

(
p2

µ2
i

)η]

∗

e−γEη

Γ(η)
, (39)

where ∂η denotes a derivative with respect to the quantity η, and the star distribution is
defined as [24]

∫ Q2

0

dp2

[
1

p2

(
p2

µ2

)η]

∗
f(p2) =

∫ Q2

0

dp2 f(p2) − f(0)

p2

(
p2

µ2

)η

+
f(0)

η

(
Q2

µ2

)η

, (40)

where f(p2) is a smooth test function. The subtraction term involving f(0) is only required
if η < 0. In the form given above formula (39) holds as long as η > −1, which is sufficient for
all practical purposes. For even smaller values of η, it would be necessary to perform further
subtractions in (40) by using the double-star distributions introduced in [25].

3.3 Matching conditions and anomalous dimensions

In order to evaluate the solutions (30) and (39) of the RG equations we need as matching
conditions the value CV (Q2, µh) of the hard function at the scale µh ∼ Q, and the result for
the associated jet function j̃(L, µi) at the intermediate scale µi ∼ Q

√
1 − x. These functions

are free of large logarithms and hence can be reliably computed using fixed-order perturbation
theory. We also need perturbative expressions for the anomalous dimensions Γcusp, γV , and
γJ .

The hard matching coefficient CV (Q2, µ) is extracted in the first matching step, when the
vector current in full QCD is matched onto an effective current built out of operators in SCET.
To obtain an expression for the Wilson coefficient one must compute, at a given order in αs,
perturbative expressions for the photon vertex function in the two theories. The calculation
is simplified greatly by performing these calculations on-shell, in which case all loop graphs
in the effective theory are scale-less and hence vanish. The bare on-shell vertex function in
QCD (called the on-shell quark form factor) has been studied extensively in the literature.
The form factor is infrared divergent and can be regularized using dimensional regularization.
The bare form factor at two-loop order was calculated long ago [26, 27, 28, 29, 30], [I believe
the first calculation is incorrect! I havn’t checked the other papers except for the one
by Gehrman et al.!] and recently the infra-red divergent contributions have even been
computed at three-loop order [31]. [Also, in a heroic effort, Manohar recently succeeded
to obtain the expression valid at one-loop order [8]!] When the (vanishing) SCET graphs
are subtracted from the QCD result, the infrared poles in 1/ε get transformed into ultraviolet
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result is [15]

Γ(∆) =
G2Fα

32π4
|VtbV∗ts|

2m3b m
2
b(µh) |Hγ(µh)|

2U1(µh, µi)U2(µi, µ0)

(
∆

µ0

)η
(1)

×
{
j̃
(
ln
mb∆

µ2
i

+ ∂η, µi
)
s̃
(
ln
∆

µ0
+ ∂η, µ0

) e−γEη

Γ(1 + η)

[
1 −
η(1 − η)
6

µ2π
∆2
+ . . .

]
+ O
(
∆

mb

)}
.

Here mb is the b-quark pole mass, and mb(µ) denotes the running mass defined in the MS scheme.

The only hadronic parameter entering at this order is the quantity µ2π related to the b-quark kinetic

energy inside the Bmeson. The ellipses represent subleading corrections of order (ΛQCD/∆)
3, which

are unknown. The pole mass and µ2π must be eliminated in terms of related parameters defined in

a physical subtraction scheme, such as the shape-function scheme [16, 17]. The scales µh ∼ mb,

µi ∼
√
mb∆, and µ0 ∼ ∆ are hard, intermediate, and soft matching scales. The hard function Hγ,

the jet function j̃, and the soft function s̃ encode the contributions to the rate associated with these

scales. Note that all information about the short-distance quantum fluctuations associated with the

weak-interaction vertices in the effective weak Hamiltonian are contained in Hγ. Logarithms of

ratios of the various scales are resummed into the evolution functions U1 (evolution from the hard to

the intermediate scale) and U2 (evolution from the intermediate to the soft scale), as well as into the

quantity

η = 2

∫ µi

µ0

dµ

µ
Γcusp[αs(µ)] , (2)

which is given in terms of an integral over the universal cusp anomalous dimension of Wilson loops

with light-like segments [18]. The result (1) is formally independent of the choices of the match-

ing scales. In practice, a residual scale dependence remains because one is forced to truncate the

perturbative expansions of the various objects in the formula for the decay rate. Reducing the scale

uncertainty associated with the lowest short-distance scale, ∆ ≈ 1GeV, is the goal of the present
work.

The soft function s̃ in (1) is related to the original B-meson shape function S (ω, µ) [11] through

a series of steps. Starting from a perturbative calculation of the shape function in the parton model

with on-shell b-quark states, we first define

s
(
ln
Ω

µ
, µ
)
≡
∫ Ω

0

dω S parton(ω, µ) . (3)

ForΩ ( ΛQCD, this parton-model expression gives the leading term in a systematic operator-product
expansion of the integral over the true shape function [15]. The first power correction is linked to

the leading term by reparameterization invariance [19, 20] and gives rise to the term proportional to

µ2π/∆
2 in (1). While the perturbative expression for S parton involves singular distributions [16], the

function s has a double-logarithmic expansion of the form

s(L, µ) = 1 +

∞∑

n=1

(
αs(µ)

4π

)n (
c
(n)

0
+ c

(n)

1
L + · · · + c(n)

2n−1L
2n−1 + c

(n)

2n
L2n
)
. (4)

The function s̃ is then obtained by the replacement rule [15]

s̃(L, µ) ≡ s(L, µ)
∣∣∣∣
Ln→In(L)

, (5)

2

Sudakov factor



“Wonderful formula”

• All scales separated, no “large” perturbative 
logarithms.

• Include Δ/mb corrections in fixed order PT.
• Leading power correction is 
• Standard fixed order OPE result for µh = µi = µ0 = µ.

F (E0) = U(µh, µi, µ0;µ)
(

mb

µh

)−2aΓ(µh,µ) (
mb∆
µ2

i

)2aΓ(µi,µ) (
∆
µ0

)−2aΓ(µ0,µ)

×h

(
mb

µh

)
j̃

(
ln

mb∆
µ2

i

+ ∂η

)
s̃

(
ln

∆
µ0

+ ∂η

)
e−γEη

Γ(1 + η)

[
1− η(1− η)

6
µ2

π

∆2
+ . . .

]
+ δF (E0),

η(ΛQCD/∆)3 ≈ 2%

leading Λ/Δ 
power correction

Δ/mb 
power corrections

η = 2
∫ µ0

µi

dµ

µ
Γcusp(αs(µ)) ≈ 0.2



Combination with fixed order result

• We combine T with fixed order result of 
Misiak et al. at E0=1.0GeV.

• Correlation of uncertainties small 
• Parameter dependence of T small.
• µh dependence of T is small.

• We combine individual uncertainties quadratically.

{

∆ ≈ 2.5GeV, fixed order OK

Br(B̄ → Xsγ)
∣∣
Eγ>1.6GeV

= T × Br(B̄ → Xsγ)
∣∣
Eγ>1.0GeV

T = F (1.6GeV)/F (1.0GeV)



Scale variation of T
T = F (1.6GeV)/F (1.0GeV)

resummation
only for leading term 

resummation also
for kin. correction 
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FIG. 1: Scale dependence of the ratio T . The curves show the
effect of varying the hard scale µh (dotted), intermediate scale
µi (dashed), soft scale µ0 (dash-dotted), and the reference
scale µ (solid) by a factor of

√
2 about their default values.

In the left plot the resummation is performed for the leading-
power terms only, while in the right plot the p3 term is also
included (see text for further explanation).

III. RESULTS AND CONCLUSIONS

In (3), the parameters mb and µ2
π are defined in the

on-shell scheme. To improve the perturbative behav-
ior, one should eliminate them in favor of appropriately
defined short-distance quantities. We use the “shape-
function scheme” proposed in [24], in which low-scale
subtracted heavy-quark parameters are defined via the
moments of the renormalized B-meson shape function,
regularized with a hard cutoff µf . The two-loop rela-
tions between the shape-function and pole-scheme pa-
rameters have been derived in [25]. We adopt the con-
ventional choice µf = 1.5GeV and use the values mb =
(4.61±0.06)GeV and µ2

π = (0.15±0.07)GeV2 extracted
from a fit to moments of inclusive B-decay spectra [22].

Ref. [8] does not provide a result for the total B̄ → Xsγ
branching fraction. The most inclusive quantity consid-
ered is the partial branching fraction defined with a mild
cut at E0 = 1 GeV. In order to combine this prediction
with our RG-improved result for the event fraction, we
define the ratio T = F (1.6 GeV)/F (1.0 GeV). We eval-
uate the various matching scales at their default values,
namely µh = mb, µ0 = ∆, and µi = µ =

√
mb∆, where

the values of ∆ are different in the numerator and de-
nominator. In order to study the residual scale depen-
dence, we then vary each of the four scales by a factor
of

√
2, correlated between numerator and denominator.

While the ratio T is formally independent of these scales,
the residual dependence of the truncated perturbative
expression can be taken as an estimate of higher-order
effects. The results are depicted in Figure 1. Not surpris-
ingly, the dominant effect arises from varying the lowest
scale, µ0 ∼ ∆, while the scale variations at the interme-
diate and high scales have a minor impact.

The term proportional to p3(∆/mb) in (3) includes a
subset of power corrections associated with a phase-space
factor. While it was possible to perform the scale separa-
tion for these terms, treating them in a different way than
the remaining power corrections in δF (E0) is somewhat

arbitrary. The right plot in the figure refers to the form of
the factorization formula shown in (3), while the left plot
corresponds to expanding out (p3 −1) in fixed-order per-
turbation theory and including it in the δF term. While
the stability with respect to variations of the soft scale
is better in the second case, the perturbative corrections
turn out to be smaller when performing the resummation
for the p3 terms. The shift in central value between the
two schemes is about 3%, which is inside the error bar.
This effect hints at the importance of RG resummation
for the power corrections.

To quote our final result we take the average of the
two schemes and assign an asymmetric error reflecting
the scale variation. This yields

T = 0.93+0.03
−0.05pert ± 0.02hadr ± 0.02pars . (8)

The event fraction F (E0) receives hadronic power cor-
rections not suppressed by inverse powers of mb, but
only by powers of the soft scale ∆. These corrections
are governed by B-meson matrix elements of local op-
erators. The leading effect proportional to µ2

π in (3)
is small mainly due to the smallness of its coefficient
η(1 − η)/6. Generically, we expect subleading correc-
tions to scale like η (ΛQCD/∆)3, for which we assign a
2% uncertainty. The main uncertainties from parame-
ter variations are ∓0.9% for αs(mZ) = 0.1189 ± 0.0020,
±0.4% for mc/mb = 0.26 ± 0.03, and ±0.1% for mb =
(4.61 ± 0.06)GeV. We also include a variation of ±1.2%
due to the fact that the three-loop anomalous dimension
of the shape function is yet unknown [17]. Our value for
the ratio T is lower than the estimate TFOPT = 0.965 ob-
tained in fixed-order perturbation theory [9]. Moreover,
we find that there is a significant theoretical uncertainty
inherent in the calculation of T .

In order to complete the analysis we need as input
the theoretical result for the B̄ → Xsγ branching frac-
tion with E0 = 1.0GeV, which we take from the fixed-
order NNLO calculation of [8, 9]. These authors find
Br(B̄ → Xsγ) = (3.27 ± 0.23) · 10−4 for E0 = 1 GeV,
where the error has been obtained by adding in quadra-
ture the uncertainties from higher-order perturbative cor-
rections (3%), nonperturbative effects (5%), parameter
dependencies (3%), and the interpolation in the charm-
quark mass employed in the NNLO estimate of charm-
penguin loop graphs (3%). The B̄ → Xsγ branching
fraction receives uncalculable power corrections starting
at order ΛQCD/mb, which cannot be described using the
operator product expansion [26]. While we disagree with
[8] on the statement that these effects are suppressed by
a power of αs(µh), we nevertheless believe that the cor-
responding uncertainty should not be larger than 5%.
Recently, a new class of enhanced power corrections has
been identified [18]. At tree level their effects are parame-
terized in terms of B-meson matrix elements of nonlocal
four-quark operators. Using the vacuum insertion ap-
proximation, a reduction of the total branching fraction
between 0.3% and 3% has been found. Accounting for
this effect lowers the central value from 3.27 to 3.22.
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FIG. 1: Scale dependence of the ratio T . The curves show the
effect of varying the hard scale µh (dotted), intermediate scale
µi (dashed), soft scale µ0 (dash-dotted), and the reference
scale µ (solid) by a factor of

√
2 about their default values.

In the left plot the resummation is performed for the leading-
power terms only, while in the right plot the p3 term is also
included (see text for further explanation).

III. RESULTS AND CONCLUSIONS

In (3), the parameters mb and µ2
π are defined in the

on-shell scheme. To improve the perturbative behav-
ior, one should eliminate them in favor of appropriately
defined short-distance quantities. We use the “shape-
function scheme” proposed in [24], in which low-scale
subtracted heavy-quark parameters are defined via the
moments of the renormalized B-meson shape function,
regularized with a hard cutoff µf . The two-loop rela-
tions between the shape-function and pole-scheme pa-
rameters have been derived in [25]. We adopt the con-
ventional choice µf = 1.5GeV and use the values mb =
(4.61±0.06)GeV and µ2

π = (0.15±0.07)GeV2 extracted
from a fit to moments of inclusive B-decay spectra [22].

Ref. [8] does not provide a result for the total B̄ → Xsγ
branching fraction. The most inclusive quantity consid-
ered is the partial branching fraction defined with a mild
cut at E0 = 1 GeV. In order to combine this prediction
with our RG-improved result for the event fraction, we
define the ratio T = F (1.6 GeV)/F (1.0 GeV). We eval-
uate the various matching scales at their default values,
namely µh = mb, µ0 = ∆, and µi = µ =

√
mb∆, where

the values of ∆ are different in the numerator and de-
nominator. In order to study the residual scale depen-
dence, we then vary each of the four scales by a factor
of

√
2, correlated between numerator and denominator.

While the ratio T is formally independent of these scales,
the residual dependence of the truncated perturbative
expression can be taken as an estimate of higher-order
effects. The results are depicted in Figure 1. Not surpris-
ingly, the dominant effect arises from varying the lowest
scale, µ0 ∼ ∆, while the scale variations at the interme-
diate and high scales have a minor impact.

The term proportional to p3(∆/mb) in (3) includes a
subset of power corrections associated with a phase-space
factor. While it was possible to perform the scale separa-
tion for these terms, treating them in a different way than
the remaining power corrections in δF (E0) is somewhat

arbitrary. The right plot in the figure refers to the form of
the factorization formula shown in (3), while the left plot
corresponds to expanding out (p3 −1) in fixed-order per-
turbation theory and including it in the δF term. While
the stability with respect to variations of the soft scale
is better in the second case, the perturbative corrections
turn out to be smaller when performing the resummation
for the p3 terms. The shift in central value between the
two schemes is about 3%, which is inside the error bar.
This effect hints at the importance of RG resummation
for the power corrections.

To quote our final result we take the average of the
two schemes and assign an asymmetric error reflecting
the scale variation. This yields

T = 0.93+0.03
−0.05pert ± 0.02hadr ± 0.02pars . (8)

The event fraction F (E0) receives hadronic power cor-
rections not suppressed by inverse powers of mb, but
only by powers of the soft scale ∆. These corrections
are governed by B-meson matrix elements of local op-
erators. The leading effect proportional to µ2

π in (3)
is small mainly due to the smallness of its coefficient
η(1 − η)/6. Generically, we expect subleading correc-
tions to scale like η (ΛQCD/∆)3, for which we assign a
2% uncertainty. The main uncertainties from parame-
ter variations are ∓0.9% for αs(mZ) = 0.1189 ± 0.0020,
±0.4% for mc/mb = 0.26 ± 0.03, and ±0.1% for mb =
(4.61 ± 0.06)GeV. We also include a variation of ±1.2%
due to the fact that the three-loop anomalous dimension
of the shape function is yet unknown [17]. Our value for
the ratio T is lower than the estimate TFOPT = 0.965 ob-
tained in fixed-order perturbation theory [9]. Moreover,
we find that there is a significant theoretical uncertainty
inherent in the calculation of T .

In order to complete the analysis we need as input
the theoretical result for the B̄ → Xsγ branching frac-
tion with E0 = 1.0GeV, which we take from the fixed-
order NNLO calculation of [8, 9]. These authors find
Br(B̄ → Xsγ) = (3.27 ± 0.23) · 10−4 for E0 = 1 GeV,
where the error has been obtained by adding in quadra-
ture the uncertainties from higher-order perturbative cor-
rections (3%), nonperturbative effects (5%), parameter
dependencies (3%), and the interpolation in the charm-
quark mass employed in the NNLO estimate of charm-
penguin loop graphs (3%). The B̄ → Xsγ branching
fraction receives uncalculable power corrections starting
at order ΛQCD/mb, which cannot be described using the
operator product expansion [26]. While we disagree with
[8] on the statement that these effects are suppressed by
a power of αs(µh), we nevertheless believe that the cor-
responding uncertainty should not be larger than 5%.
Recently, a new class of enhanced power corrections has
been identified [18]. At tree level their effects are parame-
terized in terms of B-meson matrix elements of nonlocal
four-quark operators. Using the vacuum insertion ap-
proximation, a reduction of the total branching fraction
between 0.3% and 3% has been found. Accounting for
this effect lowers the central value from 3.27 to 3.22.

Note: fixed order result is T=0.96



Beyond E0=1.6GeV
• HFAG extrapolates all expt. results to common 

value of E0=1.6GeV
• 1.6 GeV is lower than what is expt. achieved. 
• Use model shape function with two parameters (mb and 

µπ).
• (Too?) small extrapolation uncertainty, 

• e.g. 1% for extrapolation from E0=1.9GeV to 1.6GeV
• Note: Babar, hep-ex/0607071, obtains 20% different value 

when extrapolating with two different schemes!! 

• Analysis can be improved
• Try to use MSOPE result up to E0=1.8 GeV.
•  If shape-function is necessary: estimate uncertainty 

from unknown shape. Include known two-loop results?



Moments

• MSOPE result for mb and µπ from moments 
consistent with B→Xclν moment analysis.

• Knowledge of anomalous dimensions sufficient. 
Two-loop constants drop out.
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Figure 3: Fits to the Belle and BaBar data for the moments of the photon spectrum.
We show contours where χ2 = 1 and 2.69, so that projections onto the axes yield
parameter ranges at 68% and 90% confidence level. The fits are performed using
the shape-function scheme (left) and the kinetic scheme (right). The solid (dashed)
contour lines refer to the NNLO (NLO) approximation. The points with error bars
indicate the results obtained from the B̄ → Xc l−ν̄ moment analysis.

in the Belle analysis. In the shape-function scheme mb and µ2
π are defined at µf = 1.5GeV,

while in the kinetic scheme we adopt the conventional choice µf = 1GeV. In all cases there is
a strong anti-correlation of the two quantities, as can be seen from the figure.

The values for the heavy-quark parameters determined form the fit to the B̄ → Xsγ
moments are in excellent agreement with those derived from moments in B̄ → Xc l−ν̄ decays,
which are mSF

b = (4.61 ± 0.08)GeV and µ2,SF
π = (0.15 ± 0.07)GeV2 in the shape-function

scheme [34], and mkin
b = (4.611 ± 0.068)GeV and µ2,kin

π = (0.447 ± 0.053)GeV2 in kinetic
scheme [1]. These reference values are shown as data points in Figure 3 for comparison.
The combined average values obtained from (51) and (52) are mSF

b = (4.63 ± 0.08)GeV and
µ2,SF

π = (0.09 ± 0.14)GeV2, and mkin
b = (4.55 ± 0.09)GeV and µ2,kin

π = (0.51 ± 0.14)GeV2.
However, given that the BaBar data are still preliminary and that they employ a higher value
of E0, we consider the fit to the Belle data as our most reliable result. Combining the values
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NNLO

NLO

68%

90%

B→Xclν



• Combination of our NNLO evaluation of cut-effects 
with result of Misiak et al. for total rate leads to

•    % perturbative, 4% parametric, 5% power  
corrections, 3% interpolation in mc.

• 1.4σ below exp. value. 1-2σ below NLO value. (Gambino 
Misiak ‘01 found BR=(3.6±0.3)x10-4 at NLO.)

• To do: improve extrapolation to experimental E0

• Use MSOPE result at experimental value of E0?

• Vary shape function model, include 2-loop effects.

Summary
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By combining a recent estimate of the total B̄ → Xsγ branching fraction at O(α2
s) with a detailed

analysis of the effects of a cut Eγ ≥ 1.6 GeV on photon energy, a prediction for the partial B̄ → Xsγ
branching fraction at next-to-next-to-leading order in renormalization-group improved perturbation
theory is obtained, in which contributions from all relevant scales are properly factorized. The result
Br(B̄ → Xsγ) = (2.98± 0.26) · 10−4 is about 1.4σ lower than the experimental world average. This
opens a window for significant New Physics contributions in rare radiative B decays.

I. INTRODUCTION

The inclusive decay B̄ → Xsγ is an important exam-
ple of a flavor-changing neutral current process, which
has been used to test the flavor sector of the Standard
Model. Many groups have worked on improving the the-
oretical analysis of this process so as to keep pace with
refinements in the measurements of its branching frac-
tion. The effective weak Hamiltonian at next-to-next-to-
leading order (NNLO) has been obtained by calculating
multi-loop matching coefficients and anomalous dimen-
sions [1, 2, 3, 4]. While the fermionic NNLO corrections
to the b → sγ matrix elements have been known for some
time [5], complete NNLO corrections are presently only
available for the electro-magnetic dipole operator [6, 7].
However, an approximate result for the NNLO charm-
penguin contributions has just been published [8]. Com-
bining these ingredients, a first estimate of the B̄ → Xsγ
branching ratio at NNLO has been presented in [9].

A complication in the analysis arises from the fact
that measurements of the B̄ → Xsγ branching fraction
impose stringent cuts on photon energy (defined in the
B-meson rest frame), Eγ > E0, with E0 in the range
between 1.8 to 2.0GeV. The standard treatment is to
extrapolate different measurements to a common refer-
ence point E0 = 1.6GeV using phenomenological mod-
els [10]. In that way, the experimental world average
Br(B̄ → Xsγ) = (3.55±0.24+0.09

−0.10 ±0.03) ·10−4 has been
derived [11]. The first error is statistical, the second one
systematical, the third one is due to the extrapolation
from high E0 to the reference value, and the last error
accounts for the subtraction of B̄ → Xdγ background. A
theoretical result for the branching ratio with a cut at
E0 = 1.6GeV has been derived in [9] using two-loop cal-
culations of the photon-energy spectrum in fixed-order
perturbation theory [12, 13]. It has been argued that
the extrapolation from the total to the partial branching
fraction does not introduce additional theoretical uncer-
tainties. This assertion is questionable because of the dy-
namical relevance of a soft scale ∆ = mb−2E0 ≈ 1.4GeV,
whose value is significantly lower than the b-quark mass.

Accounting for the photon-energy cut properly re-
quires to disentangle contributions associated with the

hard scale µh ∼ mb, the soft scale µ0 ∼ ∆, and an inter-
mediate scale µi ∼

√
mb∆ set by the typical final-state

hadronic invariant mass. When the cut value E0 is cho-
sen sufficiently low, ∆ becomes a short-distance scale,
and renormalization-group (RG) improved perturbation
theory can be employed to calculate the effects of the
photon-energy cut using a multi-scale operator product
expansion [14]. We have recently performed a systematic
analysis of these effects at NNLO. Two-loop corrections
at the soft scale were calculated in [15], while those at
the intermediate scale were computed in [16]. Here, the
analysis is completed by extracting the two-loop hard
matching corrections from a comparison with fixed-order
calculations of the photon spectrum.

Using this method, we compute the fraction of all
B̄ → Xsγ events with Eγ ≥ 1.6GeV with a perturbative
precision of 5%. At this level of accuracy several other,
nonperturbative effects need to be evaluated carefully.
The event fraction receives hadronic power corrections
∼ (ΛQCD/∆)n governed by B-meson matrix elements of
local operators. The leading correction (n = 2) is known
and turns out to be small, but terms with n ≥ 3 are
presently unknown. Recently, a new class of enhanced
ΛQCD/mb corrections to the B̄ → Xsγ decay rate has
been identified, which involve matrix elements of nonlo-
cal operators [17]. A model analysis using the vacuum
insertion approximation indicates that these corrections
affect the total decay rate at the level of a few percent.

Combining our result for the event fraction with the
prediction for the total branching fraction from [8, 9], we
obtain

Br(B̄ → Xsγ) = (2.98 ± 0.26) · 10−4 (1)

for E0 = 1.6GeV, where we have added in quadrature
the uncertainties from higher-order perturbative effects
(+4
−6%), hadronic power corrections (5%), parametric de-

pendencies (4%), and the interpolation in the charm-
quark mass (3%). Two-loop perturbative corrections at
the intermediate and soft scales significantly lower the
branching fraction with regard to the fixed-order result
given in [8], and they increase the theoretical uncertainty.
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• Experimental average (HFAG) 

• for cut Eγ>E0=1.6GeV

• stat.+syst., extrapolation to low E0, b→γd subtr.

• Theory @ NNLO (hep-ph/0610067 with hep-ph/0609232)

•    % perturbative, 4% parametric, 5% power  
corrections, 3% interpolation in mc.

• 1.4σ below exp. value. 1-2σ below NLO value. (Gambino 
Misiak ‘01 found BR=(3.6±0.3)x10-4 at NLO.)
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By combining a recent estimate of the total B̄ → Xsγ branching fraction at O(α2
s) with a detailed

analysis of the effects of a cut Eγ ≥ 1.6 GeV on photon energy, a prediction for the partial B̄ → Xsγ
branching fraction at next-to-next-to-leading order in renormalization-group improved perturbation
theory is obtained, in which contributions from all relevant scales are properly factorized. The result
Br(B̄ → Xsγ) = (2.98± 0.26) · 10−4 is about 1.4σ lower than the experimental world average. This
opens a window for significant New Physics contributions in rare radiative B decays.

I. INTRODUCTION

The inclusive decay B̄ → Xsγ is an important exam-
ple of a flavor-changing neutral current process, which
has been used to test the flavor sector of the Standard
Model. Many groups have worked on improving the the-
oretical analysis of this process so as to keep pace with
refinements in the measurements of its branching frac-
tion. The effective weak Hamiltonian at next-to-next-to-
leading order (NNLO) has been obtained by calculating
multi-loop matching coefficients and anomalous dimen-
sions [1, 2, 3, 4]. While the fermionic NNLO corrections
to the b → sγ matrix elements have been known for some
time [5], complete NNLO corrections are presently only
available for the electro-magnetic dipole operator [6, 7].
However, an approximate result for the NNLO charm-
penguin contributions has just been published [8]. Com-
bining these ingredients, a first estimate of the B̄ → Xsγ
branching ratio at NNLO has been presented in [9].

A complication in the analysis arises from the fact
that measurements of the B̄ → Xsγ branching fraction
impose stringent cuts on photon energy (defined in the
B-meson rest frame), Eγ > E0, with E0 in the range
between 1.8 to 2.0GeV. The standard treatment is to
extrapolate different measurements to a common refer-
ence point E0 = 1.6GeV using phenomenological mod-
els [10]. In that way, the experimental world average
Br(B̄ → Xsγ) = (3.55±0.24+0.09

−0.10 ±0.03) ·10−4 has been
derived [11]. The first error is statistical, the second one
systematical, the third one is due to the extrapolation
from high E0 to the reference value, and the last error
accounts for the subtraction of B̄ → Xdγ background. A
theoretical result for the branching ratio with a cut at
E0 = 1.6GeV has been derived in [9] using two-loop cal-
culations of the photon-energy spectrum in fixed-order
perturbation theory [12, 13]. It has been argued that
the extrapolation from the total to the partial branching
fraction does not introduce additional theoretical uncer-
tainties. This assertion is questionable because of the dy-
namical relevance of a soft scale ∆ = mb−2E0 ≈ 1.4GeV,
whose value is significantly lower than the b-quark mass.

Accounting for the photon-energy cut properly re-
quires to disentangle contributions associated with the

hard scale µh ∼ mb, the soft scale µ0 ∼ ∆, and an inter-
mediate scale µi ∼

√
mb∆ set by the typical final-state

hadronic invariant mass. When the cut value E0 is cho-
sen sufficiently low, ∆ becomes a short-distance scale,
and renormalization-group (RG) improved perturbation
theory can be employed to calculate the effects of the
photon-energy cut using a multi-scale operator product
expansion [14]. We have recently performed a systematic
analysis of these effects at NNLO. Two-loop corrections
at the soft scale were calculated in [15], while those at
the intermediate scale were computed in [16]. Here, the
analysis is completed by extracting the two-loop hard
matching corrections from a comparison with fixed-order
calculations of the photon spectrum.

Using this method, we compute the fraction of all
B̄ → Xsγ events with Eγ ≥ 1.6GeV with a perturbative
precision of 5%. At this level of accuracy several other,
nonperturbative effects need to be evaluated carefully.
The event fraction receives hadronic power corrections
∼ (ΛQCD/∆)n governed by B-meson matrix elements of
local operators. The leading correction (n = 2) is known
and turns out to be small, but terms with n ≥ 3 are
presently unknown. Recently, a new class of enhanced
ΛQCD/mb corrections to the B̄ → Xsγ decay rate has
been identified, which involve matrix elements of nonlo-
cal operators [17]. A model analysis using the vacuum
insertion approximation indicates that these corrections
affect the total decay rate at the level of a few percent.

Combining our result for the event fraction with the
prediction for the total branching fraction from [8, 9], we
obtain

Br(B̄ → Xsγ) = (2.98 ± 0.26) · 10−4 (1)

for E0 = 1.6GeV, where we have added in quadrature
the uncertainties from higher-order perturbative effects
(+4
−6%), hadronic power corrections (5%), parametric de-

pendencies (4%), and the interpolation in the charm-
quark mass (3%). Two-loop perturbative corrections at
the intermediate and soft scales significantly lower the
branching fraction with regard to the fixed-order result
given in [8], and they increase the theoretical uncertainty.
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By combining a recent estimate of the total B̄ → Xsγ branching fraction at O(α2
s) with a detailed

analysis of the effects of a cut Eγ ≥ 1.6 GeV on photon energy, a prediction for the partial B̄ → Xsγ
branching fraction at next-to-next-to-leading order in renormalization-group improved perturbation
theory is obtained, in which contributions from all relevant scales are properly factorized. The result
Br(B̄ → Xsγ) = (2.98± 0.26) · 10−4 is about 1.4σ lower than the experimental world average. This
opens a window for significant New Physics contributions in rare radiative B decays.

I. INTRODUCTION

The inclusive decay B̄ → Xsγ is an important exam-
ple of a flavor-changing neutral current process, which
has been used to test the flavor sector of the Standard
Model. Many groups have worked on improving the the-
oretical analysis of this process so as to keep pace with
refinements in the measurements of its branching frac-
tion. The effective weak Hamiltonian at next-to-next-to-
leading order (NNLO) has been obtained by calculating
multi-loop matching coefficients and anomalous dimen-
sions [1, 2, 3, 4]. While the fermionic NNLO corrections
to the b → sγ matrix elements have been known for some
time [5], complete NNLO corrections are presently only
available for the electro-magnetic dipole operator [6, 7].
However, an approximate result for the NNLO charm-
penguin contributions has just been published [8]. Com-
bining these ingredients, a first estimate of the B̄ → Xsγ
branching ratio at NNLO has been presented in [9].

A complication in the analysis arises from the fact
that measurements of the B̄ → Xsγ branching fraction
impose stringent cuts on photon energy (defined in the
B-meson rest frame), Eγ > E0, with E0 in the range
between 1.8 to 2.0GeV. The standard treatment is to
extrapolate different measurements to a common refer-
ence point E0 = 1.6GeV using phenomenological mod-
els [10]. In that way, the experimental world average
Br(B̄ → Xsγ) = (3.55±0.24+0.09

−0.10 ±0.03) ·10−4 has been
derived [11]. The first error is statistical, the second one
systematical, the third one is due to the extrapolation
from high E0 to the reference value, and the last error
accounts for the subtraction of B̄ → Xdγ background. A
theoretical result for the branching ratio with a cut at
E0 = 1.6GeV has been derived in [9] using two-loop cal-
culations of the photon-energy spectrum in fixed-order
perturbation theory [12, 13]. It has been argued that
the extrapolation from the total to the partial branching
fraction does not introduce additional theoretical uncer-
tainties. This assertion is questionable because of the dy-
namical relevance of a soft scale ∆ = mb−2E0 ≈ 1.4GeV,
whose value is significantly lower than the b-quark mass.

Accounting for the photon-energy cut properly re-
quires to disentangle contributions associated with the

hard scale µh ∼ mb, the soft scale µ0 ∼ ∆, and an inter-
mediate scale µi ∼

√
mb∆ set by the typical final-state

hadronic invariant mass. When the cut value E0 is cho-
sen sufficiently low, ∆ becomes a short-distance scale,
and renormalization-group (RG) improved perturbation
theory can be employed to calculate the effects of the
photon-energy cut using a multi-scale operator product
expansion [14]. We have recently performed a systematic
analysis of these effects at NNLO. Two-loop corrections
at the soft scale were calculated in [15], while those at
the intermediate scale were computed in [16]. Here, the
analysis is completed by extracting the two-loop hard
matching corrections from a comparison with fixed-order
calculations of the photon spectrum.

Using this method, we compute the fraction of all
B̄ → Xsγ events with Eγ ≥ 1.6GeV with a perturbative
precision of 5%. At this level of accuracy several other,
nonperturbative effects need to be evaluated carefully.
The event fraction receives hadronic power corrections
∼ (ΛQCD/∆)n governed by B-meson matrix elements of
local operators. The leading correction (n = 2) is known
and turns out to be small, but terms with n ≥ 3 are
presently unknown. Recently, a new class of enhanced
ΛQCD/mb corrections to the B̄ → Xsγ decay rate has
been identified, which involve matrix elements of nonlo-
cal operators [17]. A model analysis using the vacuum
insertion approximation indicates that these corrections
affect the total decay rate at the level of a few percent.

Combining our result for the event fraction with the
prediction for the total branching fraction from [8, 9], we
obtain

Br(B̄ → Xsγ) = (2.98 ± 0.26) · 10−4 (1)

for E0 = 1.6GeV, where we have added in quadrature
the uncertainties from higher-order perturbative effects
(+4
−6%), hadronic power corrections (5%), parametric de-

pendencies (4%), and the interpolation in the charm-
quark mass (3%). Two-loop perturbative corrections at
the intermediate and soft scales significantly lower the
branching fraction with regard to the fixed-order result
given in [8], and they increase the theoretical uncertainty.
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