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Decays of charmed mesons
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+ In both cases, experiments measure a hadronic M.E. times a CKM element
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Why calculate fp,p, and D—t,K on the lattice?

(1) Can combine experimental measurements of branching fractions with lattice
calculations of decay constants & form factors to extract |Veda|, | Ves|

(2z) Can combine experimental measurements of branching fractions with values

of |Ved ], | Ves | from elsewhere to experimentally determine decay constants
or form factors, then compare with lattice QCD calculations

+ Approach #2 provides a test of lattice QCD methods, e.qg.:

<« Dynamical (sea) quark effects
< Light quark formalism
<+ Heavy quark formalism

7

< Chiral extrapolations

+ Correct lattice QCD results for D-mesons give confidence in similar lattice
calculations with B-mesons
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Current lattice measurements of D decays

CAVEAT: This talk will be restricted to

three-flavor unquenched lattice calculations

+ Currently two groups calculating heavy-light meson quantities with three
dynamical quark flavors: Fermilab/MILC & HPQCD

+ Both use the publicly available “2+1 flavor” MILC configurations
[Phys.Rev.D/0:114501,2004] which have three flavors of improved staggered
quarks:

+ Two degenerate light quarks and one heavy quark (= m)
% Light quark mass ranges from m;/10 < m; < my
+ Groups use different heavy quark discretizations:
% Fermilab/MILC uses Fermilab quarks
<+ HPQCD uses nonrelativistic (NRQCD) heavy quarks
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Systematics in lattice calculations

+ Lattice calculations typically quote the following sources of error:
1. Monte carlo statistics & fitting

2. Tuning lattice spacing, a, and quark masses

3. Matching lattice gauge theory to continuum QCD

<+ (Sometimes split up into relativistic errors, discretization errors,
perturbation theory, ...)

4. Extrapolation to confinuum

5. Chiral extrapolation to physical up, down quark masses

+ FErrors #3 and #5 are dominant sources of uncertainty in current heavy-light
lattice calculations -- will discuss them in turn
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Heavy quarks on the lattice

PROBLEM: Generic lattice quark action will have discretization errors o« (amg)”

sOLUTION: Use knowledge of the heavy quark/nonrelativistic quark limits of QCD
to systematically eliminate HQ discretization errors order-by-order

FERMILAB METHOD LATTICE NRQCD
[Phys.Rev.D55:3933-3957,1997] [Phys.Rev.D46:4052-4067,1992]
Continuum QCD Continuum QCD

(using —
HQET) NOﬂl’e|OTI\;ISTIC QCD
Laffice gauge theory Lattice gauge theory

+ Both methods require tuning parameters of lattice action

+ For heavy-light decays, must also match lattice currents to continuum

+ Typically calculate matching coefficients in lattice perturbation theory
[Phys.Rev.D48:2250-2264,1993]
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Matching errors

In principle, can remove errors of any order in heavy quark mass, but, in
practice, becomes increasingly difficult at each higher order

—> Must estimate size of errors due to inexact matching
FERMILAB METHOD LATTICE NRQCD
QCD QCD
“heavy quark “relativistic errors”,
discretization e.g. O(as Aqaco/Ma) & O(Aqcp?Me’?)
effects” NRQCD
LGT " perturbation theory errors”,
e.g. O(as?)

Combine all errors associated

with discretizing action LGT

Estimate errors using knowledge of < Estimate errors using power-counting
short-distance coefficients and
power-counting
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Chiral extrapolation of lattice data

+ Must extrapolate lattice results to physical values of up, down quark mass

+ For MILC 2+1 flavor lattices, must use staggered chiral perturbation theory
[Lee & Sharpe, Aubin & Bernard, Sharpe & RV]

7

<+ Accounts for next-to-leading
order light quark mass dependence

<+ Also accounts for light quark
discretization effects through
O(OL52 OQAQCDQ)

e

*  Extremely successful for light-light
meson quantifies such as fy
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+ commMEeNT: Staggered results agree with experimental values after chiral

extrapolation in large part because the simulated quark masses are light
and the lattice results are already close to the correct answer
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HPQCD calculation of fp,

‘fDS=29OiQOiQ9iQ9ic’>MeV

erturbation relativistic generic
stafistics & fitting P ”L]J r rection discretization

eory corrections effects
C ‘ w ‘ w w o
+ Agrees with experiment: 08 augmy = 0.04, miF/mi*=1/5 ]
fp, =279 £ 17 £ 20 MeV [BaBar] I | | ]
+ Statistical error dominated by o 06 * %
extrapolation of mg to charm § i ]
quark mass S .0 ]
+ Perturbation theory error from Sd I ]
1-loop lattice-to-continuum E o0 | -
. g 7L B; D,
operator matching I ]
[Phys.Rev.Lett.92:162001,2004] ol L L |

0 0.2 0.4 0.6
1 /mQ (GeV")
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Fermilab/MILC calculation of fp p.

chiral

lattice spacing & mc tuning  extrapolation PR ' | :
300 = hep-ph/9711426 [Fermilab] T 2
e hep-1at/0206016 [MILC] ]
280 & hep-1at/0506030 [Fermilab + MILC] T
~ ek + BaBar (Moriond 2006) 7 H E
E : | $ 7
S 240F ? 1 E
3 20 | -
200;— " —
180;— ]

. 4. b | | | |

staftistics heavy quark 10 0 i . 2 3

discretization effects

[Phys.Rev.Lett.95:122002,2005] TP ' | ;
300 = hep-ph/9711426 [Fermilab] -
e hep-1at/0206016 [MILC] .
. . 280 & hep-la ermila =
+ Simulate directly at charm quark mass ol * ‘;;1658282832 Cr B M ]
. . = ok E
+ Current matching partly nonperturbative o T { g
w220 } - -
+ fpo+, fpg calculations preceded Cleo-c E 1 : i
measurements = lattice predictions v

0 1 2 3

. . . n
Results finalized since CKM 2005 !
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Potential sources of improvement

ForR HPQCD:

+ 2-loop perturbative (or nonperturbative) matching

+ Highly-improved staggered quark (HISQ) action to simulate directly af
charm (in progress -- hep-lat/0610092)

FOR FERMILAB/MILC:
+ 2-loop matching of heavy-light current p-factor

+ Nonperturbative determination of clover coefficient in heavy-quark action
(e.g. see Lin & Christ)

+ Improved heavy-quark action (in progress -- Kronfeld & Oktay)

IN GENERAL:
+ Lighter quark masses and finer lattice spacings

+ Heavy-light calculations with different light quark action, €.g domain-wall
(RBC) or overlap fermions (JLQCD)
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Extension to fg

Successful predictions of fp, fp, lend confidence in lattice methods

The ratio of decay constants, in which
lat. —
several latfice uncertainties cancel, is Rays 9" = 0.786 £ 0.043

particularly compelling: Rq/sP-=0.779 + 0.093

[lat: Phys.Rev.Lett.95:122002,2005; exp: Cleo-c/BaBar]

HPQCD fg better than fp because can simulate directly at b quark mass

fa = 216(9)(19) (4 )(6 )MeV | HpacD:
fs./fs = 1.20(3) (1) Phys.Rev.Let1.95:212001,2005

Fermilab/MILC fs comparable to fp, and heavy quark discretization errors
somewhat smaller

Fermilab/MILC: ¢ /60 "='0.99(2) (6)

Simone, Lattice ‘06 B
(Preliminary) fs/fo = 0.95(3)(6)
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Lattice results for D—m, K
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Fermilab/MILC calculation of D—x

SVS.
staf. 4 1.5

0 tHis \Ilvofk |
-k exp’t (BES)

£,0%(0) = 0.64(3) (6) N
| Vea| = 0.239(10)(24)(20) |
5 0 : 2
stat. sys. exp. q [GeV]

(Statistical errors only)
[Phys.Rev.Lett.94:011601,2005]

+ Given | Ved|, result for f(0) consistent with experiment

+ Conversely, 14% measurement of | Vea| - error dominated by discretization
effects:

<+ 5% from lattice momenta
<+ 7% from heavy quark discretization
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Fermilab/MILC calculation of D—K

2.5_ IIIIIIII |IIII| IIIIIIIIIIIIIIIIIIII |IIII_

+ Form factor shape and normalization
consistent with experiment

+ Calculations preceded Focus, Belle,
BaBar measurements
= |attice prediction

f+(612)

05~ @ experiment [Belle, hep-ex/0510003]
— lattice QCD [Fermilab/MILC, hep-ph/0408306]

SYS' Lo b b b b b b L |

S‘I‘C] ‘|' . 0 005 01 015 02 025 03 035 04  04f

. - + 11% measurement of | Ves| --
fib K(O) =0.73(3)(7) error dominated by

| Ves| = 0.969(39)(94) (24) discretization effects:

% 5% from lattice momenta

stat. sys. exp.
[Phys.Rev.Lett.94:011601,20035]

<+ 7% from heavy quark discretization
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Extension to B—mt/v

Two essential differences in Fermilab/MILC error budgets for D and B
semileptonic form factors:

<+ Discretization error decreases from D- to B-decays: 9% — 7%

< Extrapolation error from fit to g? dependence increases: 2% — 11% for f(0)

Dominant error in D-decays is 3
heavy-quark discretization ol
24F -
Dominant error in B-decay is o -
q? extrapolation L8k -
Lo .
141 -
12F -
Ir ]
While methods translate from D to B 82 -
semileptonic decays, errors do nof; 0.4L -
each calculation needs 020
improvement in different areas % 5 0 13 20 25
q (GeV)

[HPQCD: Phys.Rev.D73:074502,2006]
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Potential sources of improvement

FOR FERMILAB/MILC:

+ Same as for decay constants -- higher-order matching and improved action

IN GENERAL:

+ Lighter quark masses and finer lattice spacings

+ Additional lattice calculations

FOR B—T:
+ Generate data at additional g? points -- two promising methods:

%+ Moving NRQCD: generate latftice data at low g? (high pion momentum)
while keeping staftistical errors under control
[Foley & Lepage; Davies, Lepage, & Won(g]

Twisted Boundary Conditions: generate additional high g data points
with pion momenta at noninteger values of 2a/L (L = spatial lattice size)
[Bedaque; Sachrajda & Villadoro]

7/
2 X4
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Summary and outlook

Leptonic and semileptonic D-decays allow ~10% determinations of CKM
matrix elements | Veda|, | Ves|

Also provide important test of lattice QCD methods

In particular, lattice QCD had made successful predictions for:

<+ Leptonic decay constants fp, fpos

L)

<+ Shape of D—=K form factor

Give confidence in similar lattice calculations of B-meson quantities
Ongoing effort to improve heavy-quark actions

Ongoing effort to increase/improve lattice data at nonzero g?

< Possibly essential for less than 10% determination of |Vu| exclusive

Progress is being made, but more work is necessary...
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